Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Franziska vom Hagen is active.

Publication


Featured researches published by Franziska vom Hagen.


Diabetes | 2008

Pericyte Migration : A Novel Mechanism of Pericyte Loss in Experimental Diabetic Retinopathy

Frederick Pfister; Yuxi Feng; Franziska vom Hagen; Sigrid Hoffmann; Grietje Molema; Jan-Luuk Hillebrands; Moshe Shani; Urban Deutsch; Hans-Peter Hammes

OBJECTIVE— The mechanism underlying pericyte loss during incipient diabetic retinopathy remains controversial. Hyperglycemia induces angiopoietin-2 (Ang-2) transcription, which modulates capillary pericyte coverage. In this study, we assessed loss of pericyte subgroups and the contribution of Ang-2 to pericyte migration. RESEARCH DESIGN AND METHODS— Numbers of total pericytes and their subgroups were quantified in retinal digest preparations of spontaneous diabetic XLacZ mice. Pericytes were divided into subgroups according to their localization, their position relative to adjacent endothelial cells, and the expression of LacZ. The contribution of Ang-2 to pericyte migration was assessed in Ang-2 overexpressing (mOpsinhAng2) and deficient (Ang2LacZ) mice. RESULTS— Pericyte numbers were reduced by 16% (P < 0.01) in XLacZ mice after 6 months of diabetes. Reduction of pericytes was restricted to pericytes on straight capillaries (relative reduction 27%, P < 0.05) and was predominantly observed in LacZ-positive pericytes (−20%, P < 0.01). Hyperglycemia increased the numbers of migrating pericytes (69%; P < 0.05), of which the relative increase due to diabetes was exclusively in LacZ-negative pericytes, indicating reduced adherence to the capillaries (176%; P < 0.01). Overexpression of Ang-2 in nondiabetic retinas mimicked diabetic pericyte migration of wild-type animals (78%; P < 0.01). Ang-2 deficient mice completely lacked hyperglycemia-induced increase in pericyte migration compared with wild-type littermates. CONCLUSIONS— Diabetic pericyte loss is the result of pericyte migration, and this process is modulated by the Ang-Tie system.


Thrombosis and Haemostasis | 2006

Impaired pericyte recruitment and abnormal retinal angiogenesis as a result of angiopoietin-2 overexpression

Yuxi Feng; Franziska vom Hagen; Frederick Pfister; Snezana Djokic; Sigrid Hoffmann; Walter Back; Patrick Wagner; J Lin; Urban Deutsch; Hans-Peter Hammes

Angiopoietin-2 (Ang2) is among the relevant growth factors induced by hypoxia and plays an important role in the initiation of retinal neovascularizations. Ang2 is also involved in incipient diabetic retinopathy, as it may cause pericyte loss. To investigate the impact of Ang2 on developmental and hypoxia-induced angiogenesis, we used a transgenic mouse line overexpressing human Ang2 in the mouse retina. Transgenic mice displayed a reduced coverage of capillaries with pericytes (-14%; p < 0.01) and a 46% increase of vascular density of the capillary network at postnatal day 10 compared to wild type mice. In the model of oxygen-induced retinopathy (OIR), Ang2 overexpression resulted in enhanced preretinal (+103%) and intraretinal neovascularization (+29%). Newly formed intraretinal vessels in OIR were also pericyte-deficient (-26%; p < 0.01). The total expression of Ang2 in transgenic mice was seven-fold, compared with wild type controls. Ang2 modulated expression of genes encoding VEGF (+65%) and Ang1 (+79%) in transgenic animals. These data suggest that Ang2 is involved in pericyte recruitment, and modulates intraretinal, and preretinal vessel formation in the eye under physiological and pathological conditions.


Cellular Physiology and Biochemistry | 2011

Oral Carnosine Supplementation Prevents Vascular Damage in Experimental Diabetic Retinopathy

Frederick Pfister; Eva Riedl; Qian Wang; Franziska vom Hagen; Martina Deinzer; Martin C. Harmsen; Grietje Molema; Benito A. Yard; Y Feng; Hans-Peter Hammes

Backgrounds/Aims: Pericyte loss, vasoregression and neuroglial activation are characteristic changes in incipient diabetic retinopathy. In this study, the effect of the antioxidant and antiglycating dipeptide carnosine was studied on the development of experimental diabetic retinopathy. Materials/Methods: STZ-induced diabetic Wistar rats were orally treated with carnosine (1g/kg body weight/day). Retinal vascular damage was assessed by quantitative morphometry. Retinal protein extracts were analyzed for markers of oxidative stress, AGE-formation, activation of the hexosamine pathway and changes in the expression of Ang-2, VEGF and heat shock proteins Hsp27 and HO-1. Glial cell activation was analyzed using Western blot analysis and immunofluorescence of GFAP expression and retinal neuronal damage was histologically examined. Results: Oral carnosine treatment prevented retinal vascular damage after 6 months of experimental hyperglycemia. The protection was not caused by ROS- or AGE-inhibition, but associated with a significant induction of Hsp27 in activated glial cells and normalization of increased Ang-2 levels in diabetic retinas. A significant reduction of photoreceptors in retinas of carnosine treated animals was noted. Conclusion: Oral carnosine treatment protects retinal capillary cells in experimental diabetic retinopathy, independent of its biochemical function. The vasoprotective effect of carnosine might be mediated by the induction of protective Hsp27 in activated glial cells and normalization of hyperglycemia-induced Ang-2.


PLOS ONE | 2010

Novel rodent models for macular research.

Gesine Huber; Severin Reinhard Heynen; Coni Imsand; Franziska vom Hagen; Regine Muehlfriedel; Naoyuki Tanimoto; Yuxi Feng; Hans-Peter Hammes; Christian Grimm; Leo Peichl; Mathias W. Seeliger; Susanne C. Beck

Background Many disabling human retinal disorders involve the central retina, particularly the macula. However, the commonly used rodent models in research, mouse and rat, do not possess a macula. The purpose of this study was to identify small laboratory rodents with a significant central region as potential new models for macular research. Methodology/Principal Findings Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli, laboratory rodents less commonly used in retinal research, were subjected to confocal scanning laser ophthalmoscopy (cSLO), fluorescein and indocyanine green angiography, and spectral-domain optical coherence tomography (SD-OCT) using standard equipment (Heidelberg Engineering HRA1 and Spectralis™) adapted to small rodent eyes. The existence of a visual streak-like pattern was assessed on the basis of vascular topography, retinal thickness, and the topography of retinal ganglion cells and cone photoreceptors. All three species examined showed evidence of a significant horizontal streak-like specialization. cSLO angiography and retinal wholemounts revealed that superficial retinal blood vessels typically ramify and narrow into a sparse capillary net at the border of the respective area located dorsal to the optic nerve. Similar to the macular region, there was an absence of larger blood vessels in the streak region. Furthermore, the thickness of the photoreceptor layer and the population density of neurons in the ganglion cell layer were markedly increased in the visual streak region. Conclusions/Significance The retinal specializations of Gerbillus perpallidus, Meriones unguiculatus and Phodopus campbelli resemble features of the primate macula. Hence, the rodents reported here may serve to study aspects of macular development and diseases like age-related macular degeneration and diabetic macular edema, and the preclinical assessment of therapeutic strategies.


Intensive Care Medicine | 2013

The flow dependency of Tie2 expression in endotoxemia

Neng F. Kurniati; Rianne M. Jongman; Franziska vom Hagen; Katherine Spokes; Jill Moser; Erzsébet Ravasz Regan; Guido Krenning; Jan-Renier A.J. Moonen; Martin C. Harmsen; Michel Struys; Hans-Peter Hammes; Jan G. Zijlstra; William C. Aird; Peter Heeringa; Grietje Molema; Matijs van Meurs

RationaleTie2 is predominantly expressed by endothelial cells and is involved in vascular integrity control during sepsis. Changes in Tie2 expression during sepsis development may contribute to microvascular dysfunction. Understanding the kinetics and molecular basis of these changes may assist in the development of therapeutic intervention to counteract microvascular dysfunction.ObjectiveTo investigate the molecular mechanisms underlying the changes in Tie2 expression upon lipopolysaccharide (LPS) challenge.Methods and resultsStudies were performed in LPS and pro-inflammatory cytokine challenged mice as well as in mice subjected to hemorrhagic shock, primary endothelial cells were used for in vitro experiments in static and flow conditions. Eight hours after LPS challenge, Tie2 mRNA loss was observed in all major organs, while loss of Tie2 protein was predominantly observed in lungs and kidneys, in the capillaries. A similar loss could be induced by secondary cytokines TNF-α and IL-1β. Ang2 protein administration did not affect Tie2 protein expression nor was Tie2 protein rescued in LPS-challenged Ang2-deficient mice, excluding a major role for Ang2 in Tie2 down regulation. In vitro, endothelial loss of Tie2 was observed upon lowering of shear stress, not upon LPS and TNF-α stimulation, suggesting that inflammation related haemodynamic changes play a major role in loss of Tie2 in vivo, as also hemorrhagic shock induced Tie2 mRNA loss. In vitro, this loss was partially counteracted by pre-incubation with a pharmacologically NF-кB inhibitor (BAY11-7082), an effect further substantiated in vivo by pre-treatment of mice with the NF-кB inhibitor prior to the inflammatory challenge.ConclusionsMicrovascular bed specific loss of Tie2 mRNA and protein in vivo upon LPS, TNFα, IL-1β challenge, as well as in response to hemorrhagic shock, is likely an indirect effect caused by a change in endothelial shear stress. This loss of Tie2 mRNA, but not Tie2 protein, induced by TNFα exposure was shown to be controlled by NF-кB signaling. Drugs aiming at restoring vascular integrity in sepsis could focus on preventing the Tie2 loss.


Cellular Physiology and Biochemistry | 2008

Angiopoietin-2 deficiency decelerates age-dependent vascular changes in the mouse retina.

Yuxi Feng; Frederick Pfister; Kay Schreiter; Yumei Wang; Oliver Stock; Franziska vom Hagen; Hartwig Wolburg; Sigrid Hoffmann; Urban Deutsch; Hans-Peter Hammes

Retinae of aged humans show signs of vascular regression. Vascular regression involves a mismatch between Angiopoietin-2 (Ang-2) and vascular endothelial growth factor (VEGF) expression. We used heterozygous Ang-2 deficient (Ang2LacZ) mice to evaluate murine retinal vascular changes and gene expression of growth factors. Vascular changes were assessed by quantitative retinal morphometry and gene expression levels of growth factors were measured by quantitative PCR. The numbers of endothelial cells and pericytes did not change in the Ang2LacZ retinae with age, whereas they decreased throughout the age spectrum studied in the wild type retinae. Moreover, vascular regression significantly decelerated in the heterozygous Ang2LacZ retinae (200% to 1 month), while the formation of acellular capillaries was significantly increased at 13 months in the wild type retinae (340% to 1 month). Gene expression analysis revealed that VEGF, Ang-1, PDGF-B and Ang2 mRNA levels were decreased in the wild type retinae at 9 month of age. However, the decrease of Ang-2 was smaller compared with other genes. While VEGF levels dropped in wild type mice up to 60% compared to 1 month, VEGF increased in heterozygous Ang-2 deficient retinae at an age of 9 months (141% to 1 month). Similarly, Ang-1 levels decreased in wild type mice (45% to 1 month), but remained stable in Ang2LacZ mice. These data suggest that Ang-2 gene dose reduction decelerates vasoregression in the retina with age. This effect links to higher levels of survival factors such as VEGF and Ang-1, suggesting that the ratio of these factors is critical for capillary cell survival.


Nephrology Dialysis Transplantation | 2013

Pleiotropic effects of angiopoietin-2 deficiency do not protect mice against endotoxin-induced acute kidney injury

Neng F. Kurniati; Matijs van Meurs; Franziska vom Hagen; Rianne M. Jongman; Jill Moser; Peter J. Zwiers; Michel Struys; Johanna Westra; Jan G. Zijlstra; Hans-Peter Hammes; Grietje Molema; Peter Heeringa

BACKGROUND In sepsis and various other inflammatory conditions, elevated circulating levels of angiopoietin-2 (Ang2) are detected, but the precise functional role of Ang2 in these conditions is not well understood. Here, we investigated the contribution of Ang2 to the inflammatory response and renal function impairment in a mouse model of endotoxaemia. METHODS Ang2-deficient mice and wild-type littermates were challenged with lipopolysaccharide [LPS; 1500 EU/g, intraperitoneal (i.p.)]. In additional experiments, wild-type C57Bl/6 mice were depleted of circulating neutrophils by antibody treatment (NIMPR14) prior to LPS challenge to study the role of neutrophils in regulating LPS-induced cytokine release. After 8 or 24 h of LPS challenge, the mice were sacrificed and organs were harvested. Quantitative reverse transcription polymerase chain reaction and enzyme-linked immunosorbent assay were performed for endothelial adhesion molecules (P-selectin, E-selectin, VCAM-1 and ICAM-1) and plasma cytokines (TNF-α, IL-6, KC, MIP-2), respectively. To assess renal function, blood urea nitrogen levels in plasma and albumin-to-creatinine ratio in urine were measured. RESULTS Upon LPS challenge, expression levels of various endothelial adhesion molecules in Ang2-deficient mice were reduced in an organ-specific manner. In contrast, in these mice, plasma levels of TNF-α and IL-6 were significantly increased compared with their wild-type littermates, possibly due to decreased neutrophil glomerular influx. Importantly, the absence of Ang2 did not protect the mice from acute kidney injury (AKI) upon LPS challenge. CONCLUSIONS The absence of Ang2 release upon LPS challenge induces pleotropic effects with regard to endothelial activation and systemic inflammation, but does not protect mice from LPS-induced AKI.


Thrombosis and Haemostasis | 2009

The absence of angiopoietin-2 leads to abnormal vascular maturation and persistent proliferative retinopathy

Yuxi Feng; Franziska vom Hagen; Yumei Wang; Susanne C. Beck; Kay Schreiter; Frederick Pfister; Sigrid Hoffmann; Patrick Wagner; Mathias W. Seeliger; Grietje Molema; Urban Deutsch; Hans-Peter Hammes

Angiopoietin-2 (Ang-2) antagonises the maturing effect of angiopoietin-1 (Ang-1) on blood vessels, and cooperates with VEGF to induce neovascularisation. In knockout mice, Ang-2 displayed a specific role in postnatal angiogenic remodelling. Here, we demonstrate that mice deficient in Ang-2 fail to form a proper spatial retinal vascular network. The retinal vasculature was characterised by reduced large vessel numbers and defects forming the superficial periphery mostly on the arteriolar site, and the secondary and tertiary deep capillary network. Hypoxia in the retinal periphery induced a four-fold VEGF upregulation and active endothelial proliferation for up to 60 days. Concomitantly, retinal digest preparations showed increased arteriolar (+33%) and capillary diameters (+90%), and fluorescein angiograms revealed leakiness of neovascular front. At one year of age, persistent preretinal vessels were non-leaky in accordance with a relative increase in the ratio of Ang-1 to VEGF. Taken together, the data suggest that Ang-2 has an important function in the spatial configuration of the three-dimensional retinal vasculature. Secondarily, prolonged VEGF activity results in a model of persistent proliferative retinopathy.


Ophthalmologica | 2007

Incipient Diabetic Retinopathy – Insights from an Experimental Model

Yuxi Feng; Franziska vom Hagen; J Lin; Hans-Peter Hammes

Vascular complications of chronic hyperglycemia including diabetic retinopathy are an increasing therapeutic and socioeconomic challenge. The epidemiology of diabetic eye disease has been well described, and there is as yet no clear indication for a reduction of incidence of blindness. Due to the complex multifactorial nature of the damage to diabetic vessels, it had been difficult to identify key targets for treatment and prevention. Novel techniques to study molecules and mechanisms involved in retinal vessel development and vascular cell interactions improved the understanding of retinal cell biology and pathobiology. A unifying concept has been proposed which links hyperglycemia-induced mitochondrial overproduction of reactive oxygen species with long-known biochemical alterations such as the formation of advanced glycation end products or the activation of the protein kinase C pathway. Specific inhibitors were identified that inhibited multiple biochemical abnormalities downstream of oxidative stress induced by high glucose.


International Scholarly Research Notices | 2011

Tumor Vascular Morphology Undergoes Dramatic Changes during Outgrowth of B16 Melanoma While Proangiogenic Gene Expression Remains Unchanged

Elise Langenkamp; Franziska vom Hagen; Peter J. Zwiers; Henk E. Moorlag; Jan P. Schouten; Hans-Peter Hammes; Annette S. H. Gouw; Grietje Molema

In established tumors, angiogenic endothelial cells (ECs) coexist next to “quiescent” EC in matured vessels. We hypothesized that angio-gene expression of B16.F10 melanoma would differ depending on the growth stage. Unraveling the spatiotemporal nature thereof is essential for drug regimen design aimed to affect multiple neovascularization stages. We determined the angiogenic phenotype—represented by 52 angio-genes—and vascular morphology of small, intermediate, and large s.c. growing mouse B16.F10 tumors and demonstrated that expression of these genes did not differ between the different growth stages. Yet vascular morphology changed dramatically from small vessels without lumen in small to larger vessels with increased lumen size in intermediate/large tumors. Separate analysis of these vascular morphologies revealed a significant difference in αSMA expression in relation to vessel morphology, while no relation with VEGF, HIF-1α, nor Dll4 expression levels was observed. We conclude that the tumor vasculature remains actively engaged in angiogenesis during B16.F10 melanoma outgrowth and that the major change in tumor vascular morphology does not follow molecular concepts generated in other angiogenesis models.

Collaboration


Dive into the Franziska vom Hagen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yuxi Feng

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Grietje Molema

University Medical Center Groningen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J Lin

Heidelberg University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge