Franziska Wachter
Harvard University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Franziska Wachter.
Molecular Cell | 2015
Lauren A. Barclay; Thomas E. Wales; Thomas P. Garner; Franziska Wachter; Susan Lee; Rachel M. Guerra; Michelle L. Stewart; Craig R. Braun; Gregory H. Bird; Evripidis Gavathiotis; John R. Engen; Loren D. Walensky
BCL-2 is a negative regulator of apoptosis implicated in homeostatic and pathologic cell survival. The canonical anti-apoptotic mechanism involves entrapment of activated BAX by a groove on BCL-2, preventing BAX homo-oligomerization and mitochondrial membrane poration. The BCL-2 BH4 domain also confers anti-apoptotic functionality, but the mechanism is unknown. We find that a synthetic α-helical BH4 domain binds to BAX with nanomolar affinity and independently inhibits the conformational activation of BAX. Hydrogen-deuterium exchange mass spectrometry demonstrated that the N-terminal conformational changes in BAX induced by a triggering BIM BH3 helix were suppressed by the BCL-2 BH4 helix. Structural analyses localized the BH4 interaction site to a groove formed by residues of α1, α1-α2 loop, and α2-α3 and α5-α6 hairpins on the BAX surface. These data reveal a previously unappreciated binding site for targeted inhibition of BAX and suggest that the BCL-2 BH4 domain may participate in apoptosis blockade by a noncanonical interaction mechanism.
Cell Death and Disease | 2013
Harald Ehrhardt; Franziska Wachter; Michaela Grunert; Irmela Jeremias
Resting tumor cells represent a huge challenge during anticancer therapy due to their increased treatment resistance. TNF-related apoptosis-inducing ligand (TRAIL) is a putative future anticancer drug, currently in phases I and II clinical studies. We recently showed that TRAIL is able to target leukemia stem cell surrogates. Here, we tested the ability of TRAIL to target cell cycle-arrested tumor cells. Cell cycle arrest was induced in tumor cell lines and xenografted tumor cells in G0, G1 or G2 using cytotoxic drugs, phase-specific inhibitors or RNA interference against cyclinB and E. Biochemical or molecular arrest at any point of the cell cycle increased TRAIL-induced apoptosis. Accordingly, when cell cycle arrest was disabled by addition of caffeine, the antitumor activity of TRAIL was reduced. Most important for clinical translation, tumor cells from three children with B precursor or T cell acute lymphoblastic leukemia showed increased TRAIL-induced apoptosis upon knockdown of either cyclinB or cyclinE, arresting the cell cycle in G2 or G1, respectively. Taken together and in contrast to most conventional cytotoxic drugs, TRAIL exerts enhanced antitumor activity against cell cycle-arrested tumor cells. Therefore, TRAIL might represent an interesting drug to treat static-tumor disease, for example, during minimal residual disease.
Blood | 2011
Harald Ehrhardt; David Schrembs; Christian Moritz; Franziska Wachter; Subrata Haldar; Ulrike Graubner; Michaela Nathrath; Irmela Jeremias
Application of anthracyclines and Vinca alkaloids on the same day represents a hallmark of polychemotherapy protocols for hematopoietic malignancies. Here we show, for the first time, that both drugs might act most efficiently if they are applied on different days. Proof-of-concept studies in 18 cell lines revealed that anthracyclines inhibited cell death by Vinca alkaloids in 83% of cell lines. Importantly, in a preclinical mouse model, doxorubicin reduced the anti-tumor effect of vincristine. Both drugs acted in a sequence-dependent manner and the strongest anti-tumor effect was obtained if both drugs were applied on different days. Most notably for clinical relevance, in 34% of 35 fresh primary childhood leukemia cells tested in vitro, doxorubicin reduced the anti-tumor effect of vincristine. As underlying mechanism, doxorubicin activated p53, p53 induced cell-cycle arrest, and cell-cycle arrest disabled inactivation of antiapoptotic Bcl-2 family members by vincristine; therefore, vincristine was unable to activate downstream apoptosis signaling. As molecular proof, antagonism was rescued by knockdown of p53, whereas knockdown of cyclin A inhibited vincristine-induced apoptosis. Our data suggest evaluating anthracyclines and Vinca alkaloids on different days in future trials. Selecting drug combinations based on mechanistic understanding represents a novel conceptional strategy for potent polychemotherapy protocols.
Clinical Cancer Research | 2011
Harald Ehrhardt; Franziska Wachter; Martina Maurer; Karsten Stahnke; Irmela Jeremias
Purpose: Sensitivity of tumor cells toward chemotherapy mainly determines the prognosis of patients suffering from acute lymphoblastic leukemia (ALL); nevertheless, underlying mechanisms regulating chemosensitivity remain poorly understood. Here, we aimed at characterizing the role of caspase-8 for chemosensitivity of B- and T-ALL cells. Experimental Design: Primary tumor cells from children with ALL were evaluated for expression levels of the caspase-8 protein, were amplified in nonobese diabetic/severe combined immunodeficient mice, transfected with siRNA, and evaluated for their chemosensitivity in vitro. Results: Effective cell death in B- and T-ALL cells depended on the presence of caspase-8 for the majority of cytotoxic drugs routinely used in antileukemia treatment. Caspase-8 was activated independently from extrinsic apoptosis signaling. Accordingly in primary ALL cells, the expression level of caspase-8 protein correlated with cell death sensitivity toward defined cytotoxic drugs in vitro. In the subgroup of primary ALL cells, with low expression of caspase-8, methotrexate (MTX) upregulated the expression of caspase-8 mediated by the transcription factor p53, suggesting epigenetic silencing of caspase-8. RNA interference in patient-derived B- and T-ALL cells revealed that effective cell death induction by most routine drug combinations involving MTX depended on the presence of caspase-8. Conclusion: Our results indicate that caspase-8 is crucial for the high antileukemic efficiency of numerous routine cytotoxic drugs. Reexpression of epigenetically downregulated caspase-8 represents a promising approach to increase efficiency of antileukemic therapy. Clin Cancer Res; 17(24); 7605–13. ©2011 AACR.
ACS Chemical Biology | 2015
Amanda L. Edwards; Franziska Wachter; Margaret Lammert; Annissa J. Huhn; James Luccarelli; Gregory H. Bird; Loren D. Walensky
Hydrocarbon stapling has been applied to restore and stabilize the α-helical structure of bioactive peptides for biochemical, structural, cellular, and in vivo studies. The peptide sequence, in addition to the composition and location of the installed staple, can dramatically influence the properties of stapled peptides. As a result, constructs that appear similar can have distinct functions and utilities. Here, we perform a side-by-side comparison of stapled peptides modeled after the pro-apoptotic BIM BH3 helix to highlight these principles. We confirm that replacing a salt-bridge with an i, i + 4 hydrocarbon staple does not impair target binding affinity and instead can yield a biologically and pharmacologically enhanced α-helical peptide ligand. Importantly, we demonstrate by electron microscopy that the pro-apoptotic activity of a stapled BIM BH3 helix correlates with its capacity to achieve cellular uptake without membrane disruption and accumulate at the organellar site of mechanistic activity.
Cell Death and Disease | 2012
Harald Ehrhardt; Ines Höfig; Franziska Wachter; Petra Obexer; Simone Fulda; Nadia Terziyska; Irmela Jeremias
During polychemotherapy, cytotoxic drugs are given in combinations to enhance their anti-tumor effectiveness. For most drug combinations, underlying signaling mechanisms responsible for positive drug–drug interactions remain elusive. Here, we prove a decisive role for the Bcl-2 family member NOXA to mediate cell death by certain drug combinations, even if drugs were combined which acted independently from NOXA, when given alone. In proof-of-principle studies, betulinic acid, doxorubicin and vincristine induced cell death in a p53- and NOXA-independent pathway involving mitochondrial pore formation, release of cytochrome c and caspase activation. In contrast, when betulinic acid was combined with either doxorubicine or vincristine, cell death signaling changed considerably; the drug combinations clearly depended on both p53 and NOXA. Similarly and of high clinical relevance, in patient-derived childhood acute leukemia samples the drug combinations, but not the single drugs depended on p53 and NOXA, as shown by RNA interference studies in patient-derived cells. Our data emphasize that NOXA represents an important target molecule for combinations of drugs that alone do not target NOXA. NOXA might have a special role in regulating apoptosis sensitivity in the complex interplay of polychemotherapy. Deciphering the differences in signaling of single drugs and drug combinations might enable designing highly effective novel polychemotherapy regimens.
British Journal of Pharmacology | 2013
Harald Ehrhardt; L Pannert; S Pfeiffer; Franziska Wachter; E Amtmann; Irmela Jeremias
In polychemotherapy protocols, that is for treatment of neuroblastoma and Ewing sarcoma, Vinca alkaloids and cell cycle‐arresting drugs are usually administered on the same day. Here we studied whether this combination enables the optimal antitumour effects of Vinca alkaloids to be manifested.
Oncogene | 2017
Franziska Wachter; Ann M. Morgan; Marina Godes; Rida Mourtada; Gregory H. Bird; Loren D. Walensky
Hydrocarbon-stapled peptides that display key residues of the p53 transactivation domain have emerged as bona fide clinical candidates for reactivating the tumor suppression function of p53 in cancer by dual targeting of the negative regulators HDM2 and HDMX. A recent study questioned the mechanistic specificity of such stapled peptides based on interrogating their capacity to disrupt p53/HDM2 and p53/HDMX complexes in living cells using a new recombinase enhanced bimolecular luciferase complementation platform (ReBiL). Here, we directly evaluate the cellular uptake, intracellular targeting selectivity and p53-dependent cytotoxicity of the clinical prototype ATSP-7041. We find that under standard serum-containing tissue culture conditions, ATSP-7041 achieves intracellular access without membrane disruption, dose-dependently dissociates both p53/HDM2 and p53/HDMX complexes but not an unrelated protein complex in long-term ReBiL experiments, and is selectively cytotoxic to cancer cells bearing wild-type p53 by inducing a surge in p53 protein level. These studies underscore the importance of a thorough stepwise approach, including consideration of the time-dependence of cellular uptake and intracellular distribution, in evaluating and advancing stapled peptides for clinical translation.
Nature Chemical Biology | 2017
Jonathan R. Pritz; Franziska Wachter; Susan Lee; James Luccarelli; Thomas E. Wales; Daniel Cohen; Paul Coote; Gregory J. Heffron; John R. Engen; Walter Massefski; Loren D. Walensky
BAX is a critical apoptotic regulator that can be transformed from a cytosolic monomer into a lethal mitochondrial oligomer, yet drug strategies to modulate it are underdeveloped due to longstanding difficulties in conducting screens on this aggregation-prone protein. Here, we overcame prior challenges and performed an NMR-based fragment screen of full-length human BAX. We identified a compound that sensitizes BAX activation by binding to a pocket formed by the junction of the α3/α4 and α5/α6 hairpins. Biochemical and structural analyses revealed that the molecule sensitizes BAX by allosterically mobilizing the α1–α2 loop and BAX BH3 helix, two motifs implicated in the activation and oligomerization of BAX, respectively. By engaging a region of core hydrophobic interactions that otherwise preserve the BAX inactive state, the identified compound informs fundamental mechanisms for conformational regulation of BAX and provides a new opportunity to reduce the apoptotic threshold for potential therapeutic benefit.
Cell Communication and Signaling | 2013
Franziska Wachter; Michaela Grunert; Cristina Blaj; David M. Weinstock; Irmela Jeremias; Harald Ehrhardt
BackgroundThe p53 protein is the best studied target in human cancer. For decades, p53 has been believed to act mainly as a tumor suppressor and by transcriptional regulation. Only recently, the complex and diverse function of p53 has attracted more attention. Using several molecular approaches, we studied the impact of different p53 variants on extrinsic and intrinsic apoptosis signaling.ResultsWe reproduced the previously published results within intrinsic apoptosis induction: while wild-type p53 promoted cell death, different p53 mutations reduced apoptosis sensitivity. The prediction of the impact of the p53 status on the extrinsic cell death induction was much more complex. The presence of p53 in tumor cell lines and primary xenograft tumor cells resulted in either augmented, unchanged or reduced cell death. The substitution of wild-type p53 by mutant p53 did not affect the extrinsic apoptosis inducing capacity.ConclusionsIn summary, we have identified a non-expected impact of p53 on extrinsic cell death induction. We suggest that the impact of the p53 status of tumor cells on extrinsic apoptosis signaling should be studied in detail especially in the context of therapeutic approaches that aim to restore p53 function to facilitate cell death via the extrinsic apoptosis pathway.