Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fraser P. Fanale is active.

Publication


Featured researches published by Fraser P. Fanale.


Journal of Geophysical Research | 1999

Hydrated salt minerals on Europa's Surface from the Galileo near-infrared mapping spectrometer (NIMS) investigation

Thomas B. McCord; Gary B. Hansen; Dennis L. Matson; Torrence V. Johnson; James K. Crowley; Fraser P. Fanale; Robert W. Carlson; William D. Smythe; Patrick D. Martin; Charles Arthur Hibbitts; James Charles Granahan; A. C. Ocampo

We reported evidence of heavily hydrated salt minerals present over large areas of Europas surface from analysis of reflectance spectra returned by the Galileo mission near infrared mapping spectrometer (NIMS) [McCord et al., 1997a, b, 1998a, b]. Here we elaborate on this earlier evidence, present spatial distributions of these minerals, examine alternate water-ice interpretations, expand on our hydrated-salts interpretation, consider salt mineral stability on Europa, and discuss the implications. Extensive well-defined areas on Europa show distinct, asymmetric water-related absorption bands in the 1 to 2.5-μm region. Radiative transfer modeling of water ice involving different particle sizes and layers at Europa temperatures does not reproduce the distinctive Europa water bands. However, ice near its melting temperature, such as in terrestrial environments, does have some characteristics of the Europa spectrum. Alternatively, some classes of heavily hydrated minerals do exhibit such water bands. Among plausible materials, heavily hydrated salt minerals, such as magnesium and sodium sulfates, sodium carbonate and their mixtures, are preferred. All Europa spectral features are present in some salt minerals and a very good match to the Europa spectrum can be achieved by mixing several salt spectra. However, no single or mix of salt mineral spectra from the limited library available has so far been found to perfectly match the Europa spectrum in every detail. The material is concentrated at the lineaments and in chaotic terrain, which are technically disrupted areas on the trailing side. Since the spectrum of the material on Europa is nearly the same everywhere so-far studied, the salt or salt-mixture composition may be nearly uniform. This suggests similar sources and processes over at least a near-hemispheric scale. This would suggest that an extensive subsurface ocean containing dissolved salts is the source, and several possible mechanisms for deposit emplacement are considered. The hydrogen bonds associated with hydration of these salts are similar or greater in strength and energy to those in pure water ice. Thus, once on the surface, the salt minerals should be as stable to disruption as water ice at the Europa temperatures, and mechanisms are suggested to enhance the stability of both materials. Spectra obtained of MgSO4·6H2O at 77 K show only small differences from room temperature spectra. The main difference is the appearance of the individual absorptions composing the broad, composite water features and associated with the several different H2O sites in the salt hydrate molecule. This suggests that the Europa absorption bands are also composites. Thus higher spectral resolution may reveal these diagnostic features in Europas spectrum. The specific salts present and their relative abundances would be indicators of the chemistry and conditions of an ocean environment, and areas of fresh, heavy concentration of these minerals should make ideal lander mission sampling sites.


Journal of Geophysical Research | 1998

Non‐water‐ice constituents in the surface material of the icy Galilean satellites from the Galileo near‐infrared mapping spectrometer investigation

T. B. McCord; Gary B. Hansen; Roger N. Clark; P. D. Martin; Charles Arthur Hibbitts; Fraser P. Fanale; James Charles Granahan; Marcia Segura; Dennis L. Matson; Torrence V. Johnson; Robert W. Carlson; William D. Smythe; G. E. Danielson

We present evidence for several non-ice constituents in the surface material of the icy Galilean satellites, using the reflectance spectra returned by the Galileo near infrared mapping spectrometer (NIMS) experiment. Five new absorption features are described at 3.4, 3.88, 4.05, 4.25, and 4.57 μm for Callisto and Ganymede, and some seem to exist for Europa as well. The four absorption bands strong enough to be mapped on Callisto and Ganymede are each spatially distributed in different ways, indicating different materials are responsible for each absorption. The spatial distributions are correlated at the local level in complex ways with surface features and in some cases show global patterns. Suggested candidate spectrally active groups, perhaps within larger molecules, producing the five absorptions include C-H, S-H, SO2, CO2, and C≡N. Organic material like tholins are candidates for the 4.57- and 3.4-μm features. We suggest, based on spectroscopic evidence, that CO2 is present as a form which does not allow rotational modes and that SO2 is present neither as a frost nor a free gas. The CO2, SO2, and perhaps cyanogen (4.57 μm) may be present as very small collections of molecules within the crystal structure, perhaps following models for radiation damage and/or for comet and interstellar grain formation at low temperatures. Some of the dark material on these surfaces may be created by radiation damage of the CO2 and other carbon-bearing species and the formation of graphite. These spectra suggest a complex chemistry within the surface materials and an important role for non-ice materials in the evolution of the satellite surfaces.


Science | 1992

Galileo encounter with 951 gaspra: first pictures of an asteroid.

M. J. S. Belton; Joseph Veverka; Peter C. Thomas; Paul Helfenstein; D. P. Simonelli; Clark R. Chapman; Merton E. Davies; Ronald Greeley; Richard Greenberg; James W. Head; Scott L. Murchie; Kenneth P. Klaasen; Torrence V. Johnson; Alfred S. McEwen; David Morrison; Gerhard Neukum; Fraser P. Fanale; Clifford D. Anger; Michael H. Carr; Carl B. Pilcher

Galileo images of Gaspra reveal it to be an irregularly shaped object (19 by 12 by 11 kilometers) that appears to have been created by a catastrophic collisional disruption of a precursor parent body. The cratering age of the surface is about 200 million years. Subtle albedo and color variations appear to correlate with morphological features: Brighter materials are associated with craters especially along the crests of ridges, have a stronger 1-micrometer absorption, and may represent freshly excavated mafic materials; darker materials exhibiting a significantly weaker 1-micrometer absorption appear concentrated in interridge areas. One explanation of these patterns is that Gaspra is covered with a thin regolith and that some of this material has migrated downslope in some areas.


Science | 1996

Near-Infrared Spectroscopy and Spectral Mapping of Jupiter and the Galilean Satellites: Results from Galileo's Initial Orbit

Robert W. Carlson; William D. Smythe; Kevin H. Baines; E. Barbinis; Kris J. Becker; R. Burns; Simon B. Calcutt; Wendy M. Calvin; Roger N. Clark; G. E. Danielson; Ashley Gerard Davies; P. Drossart; Th. Encrenaz; Fraser P. Fanale; James Charles Granahan; Gary B. Hansen; P. Herrera; Charles Arthur Hibbitts; J. Hui; Patrick G. J. Irwin; Torrence V. Johnson; L. W. Kamp; Hugh H. Kieffer; F. Leader; E. Lellouch; Rosaly Lopes-Gautier; Dennis L. Matson; Thomas B. McCord; R. Mehlman; A. Ocampo

The Near Infrared Mapping Spectrometer performed spectral studies of Jupiter and the Galilean satellites during the June 1996 perijove pass of the Galileo spacecraft. Spectra for a 5-micrometer hot spot on Jupiter are consistent with the absence of a significant water cloud above 8 bars and with a depletion of water compared to that predicted for solar composition, corroborating results from the Galileo probe. Great Red Spot (GRS) spectral images show that parts of this feature extend upward to 240 millibars, although considerable altitude-dependent structure is found within it. A ring of dense clouds surrounds the GRS and is lower than it by 3 to 7 kilometers. Spectra of Callisto and Ganymede reveal a feature at 4.25 micrometers, attributed to the presence of hydrated minerals or possibly carbon dioxide on their surfaces. Spectra of Europas high latitudes imply that fine-grained water frost overlies larger grains. Several active volcanic regions were found on Io, with temperatures of 420 to 620 kelvin and projected areas of 5 to 70 square kilometers.


Science | 1996

Galileo's First Images of Jupiter and the Galilean Satellites

M. J. S. Belton; James W. Head; A. P. Ingersoll; Ronald Greeley; Alfred S. McEwen; Kenneth P. Klaasen; David A. Senske; Robert T. Pappalardo; G. C. Collins; Ashwin R. Vasavada; Robert John Sullivan; D. P. Simonelli; P. E. Geissler; Michael H. Carr; Merton E. Davies; J. Veverka; Peter J. Gierasch; Donald J. Banfield; M. Bell; Clark R. Chapman; Clifford D. Anger; Richard Greenberg; G. Neukum; Carl B. Pilcher; R. F. Beebe; Joseph A. Burns; Fraser P. Fanale; W. Ip; Torrence V. Johnson; David R. Morrison

The first images of Jupiter, Io, Europa, and Ganymede from the Galileo spacecraft reveal new information about Jupiters Great Red Spot (GRS) and the surfaces of the Galilean satellites. Features similar to clusters of thunderstorms were found in the GRS. Nearby wave structures suggest that the GRS may be a shallow atmospheric feature. Changes in surface color and plume distribution indicate differences in resurfacing processes near hot spots on Io. Patchy emissions were seen while Io was in eclipse by Jupiter. The outer margins of prominent linear markings (triple bands) on Europa are diffuse, suggesting that material has been vented from fractures. Numerous small circular craters indicate localized areas of relatively old surface. Pervasive brittle deformation of an ice layer appears to have formed grooves on Ganymede. Dark terrain unexpectedly shows distinctive albedo variations to the limit of resolution.


Science | 1991

Galileo infrared imaging spectroscopy measurements at Venus

Robert W. Carlson; Kevin H. Baines; Th. Encrenaz; F. W. Taylor; P. Drossart; L. W. Kamp; James B. Pollack; E. Lellouch; A.D. Collard; Simon B. Calcutt; David Harry Grinspoon; Paul R. Weissman; William D. Smythe; A. Ocampo; G. E. Danielson; Fraser P. Fanale; Torrence V. Johnson; Hugh H. Kieffer; Dennis L. Matson; Thomas B. McCord; L. A. Soderblom

During the 1990 Galileo Venus flyby, the Near Infaied Mapping Spectrometer investigated the night-side atmosphere of Venus in the spectral range 0.7 to 5.2 micrometers. Multispectral images at high spatial resolution indicate substanmial cloud opacity variations in the lower cloud levels, centered at 50 kilometers altitude. Zonal and meridional winds were derived for this level and are consistent with motion of the upper branch of a Hadley cell. Northern and southern hemisphere clouds appear to be markedly different. Spectral profiles were used to derive lower atmosphere abundances of water vapor and other species.


The Astrophysical Journal | 1974

Sodium D-line emission from Io: sputtering and resonant scattering hypothesis

Dennis L. Matson; Torrence V. Johnson; Fraser P. Fanale

A model is presented in explanation of the observation of sodium D-line emission from Io. The model involves: (1) charged-particle sputtering of sodium from Ios surface, (2) ejection of sodium into a cloud surrounding Io, and (3) resonant scattering of incident sunlight. Observational consequences and tests of the proposed model are also discussed.


Icarus | 1989

The water regime of asteroid (1) Ceres

Fraser P. Fanale; James R. Salvail

Abstract An analytical model is presented which describes the water regime of asteroid Ceres. The model predicts surface and subsurface temperatures, water fluxes, and ice depths as well as integrated water supply rates and residual atmospheric/surface water as a function of time, lattitude, and assumed regolith properties. We find that ice could have survived for 4.5 byr at depths of only 10–100 m near the equator and less than 1.0 to 10 m at latitudes greater than 40°. The current global water supply rate is expected to be between 30 and 300 g sec−1, which corresponds to a near surface number density of ∼1 × 104molecules cm−3. At least one current interpretation of the near-infrared reflectance of Ceres requires coverage by a very thin layer of ice down to 48° lat. Our model suggests that ice with the overall albedo of Ceres (0.09) could exist in transient steady state with the above supply rate only at latitudes greater than 80°. Otherwise the water loss rate from Ceres would exceed the supply rate by orders of magnitude. Stirring of the regolith substantially alters the distribution of ice only at latitudes greater than 70°. At lower latitudes ice depletion is faster than impact rehomogenization at all relevant depths and time scales. Possible contributors to the spectral feature at 3.1 μm other than free surface ice, such as interlayer ice within the optical surface, are considered.


Science | 1994

First images of asteroid 243 Ida

M. J. S. Belton; Clark R. Chapman; Joseph Veverka; Kenneth P. Klaasen; A. Harch; Ronald Greeley; Richard Greenberg; James W. Head; Alfred S. McEwen; David Morrison; Peter C. Thomas; Merton E. Davies; Michael H. Carr; G. Neukum; Fraser P. Fanale; Donald R. Davis; Clifford D. Anger; Peter J. Gierasch; A. P. Ingersoll; Carl B. Pilcher

The first images of the asteroid 243 Ida from Galileo show an irregular object measuring 56-kilometers by 24 kilometers by 21 kilometers. Its surface is rich in geologic features, including systems of grooves, blocks, chutes, albedo features, crater chains, and a full range of crater morphologies. The largest blocks may be distributed nonuniformly across the surface; lineaments and dark-floored craters also have preferential locations. Ida is interpreted to have a substantial regolith. The high crater density and size-frequency distribution (–3 differential power-law index) indicate a surface in equilibrium with saturated cratering. A minimum model crater age for Ida—and therefore for the Koronis family to which Ida belongs—is estimated at 1 billion years, older than expected.


Icarus | 1983

Frost grain size metamorphism: Implications for remote sensing of planetary surfaces

Roger Nelson Clark; Fraser P. Fanale; Aaron P. Zent

Abstract An understanding of the rates of frost grain growth is essential to the goal of relating spectral data on surface mineralogy to the physical history of a planetary surface. Models of grain growth kinetics have been constructed for various frosts based on their individual thermodynamic properties and on the difference in binding energy between molecules on plane vs curved faces. A steady state situation can occur on planetary surfaces in which thermal elimination of small grains competes with their creation, usually by meteorite impact. We utilize predicted grain growth rates to explain telescopic spectral data on condensate surfaces throughout the solar system. On Pluto, predicted CH4 ice grain growth rates are very high despite the low temperature, resulting in a multicentimeter optical path. This explains the strong CH4 absorption band depths, which otherwise would require large amounts of CH4 gas. On the Uranian and Saturnian satellites, extremely slow grain growth rates are predicted because of the low vapor pressure of H2O at the existing average surface temperatures. This may explain evidence for fine grain size and peculiar microstructure. On Io, ordinary thermal exchange is more effective than sputtering in promoting grain growth because of the properties of SO2. Over much of Ios disk, submicron size grains of SO2 could plausibly reconfigure into a surface glaze on a timescale comparable to the resurfacing rate. This may explain the relatively strong SO2 signature in Ios infrared absorption spectrum as opposed to its weaker manifestation in the visible spectrum. In spite of lower sputtering fluxes, sputtering plays a more important role in grain growth for Europa, Ganymede, and Callisto than on Io. This is a result of high rates of thermally activated grain growth and resurfacing on Io. The sequence of H2O-ice absorption band depths (related to the mean grain size) is J2(T) ∼ J3(T) > J2(L) > J3(L) ∼ J4(T) ∼ J4(L), where L = leading and T = trailing. This is to be expected if sputtering were dominant. The calculations show, however, that neither thermalized exchange fluxes nor sputtering exchange fluxes can produce the implied grain growth or the ordering by ice absorption band depths of the six satellite hemispheres. Only sputtering control by simple ejection of H2O from the satellites, as the dominant cause of shorter mean lifetimes for smaller exposed grains, can satisfactorily explain the data. Some observations, which suggest that there are vertical grain size gradients, may result from a steady state balance between intense near surface production of fine frost by comminution, coupled with ongoing ubiquitous grain growth in the vertical column. In certain cases, e.g., Europa and Enceladus, the possibility exists that endogenic activity as well as comminution could affect grain size—at least locally. It is concluded that not only ice identification and mapping, but ice grain size mapping is an important experiment to be conducted on future missions.

Collaboration


Dive into the Fraser P. Fanale's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dennis L. Matson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Michael H. Carr

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar

Ronald Greeley

Arizona State University

View shared research outputs
Top Co-Authors

Avatar

Clark R. Chapman

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar

Torrence V. Johnson

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge