Fred Anapol
University of Wisconsin–Milwaukee
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fred Anapol.
American Journal of Physical Anthropology | 1997
Trudy R. Turner; Fred Anapol; Clifford J. Jolly
Body weight and ten body segment measurements were collected from 367 wild-trapped vervet monkeys (Cercopithecus aethiops) in central and southern Kenya. The animals represent between 70 and 95% of the animals in each of 30 troops at four geographical locations separated by 80 to 380 km. The capture sites differed in altitude, mean annual rainfall and temperature. Two questions are addressed: (1) what are the differences in male and female growth patterns, and (2) what is the relationship between size, climate, and availability of food? Each animal was assigned to an age class based on dental examination. Means for all variables do not diverge for males and females from birth to age class 4 (15-18 months). After this, male and female growth rates diverge. This sexual dimorphism in growth pattern may reflect timing of entry into the reproductive community. A nested analysis of variance (ANOVA) was employed to compare sites, groups within sites and individuals within groups. Statistically significant differences between sites in body weight and body segment measurements are found for adult females. Except for tail length, these differences do not follow Bergmanns or Allens Rules correlating size differences and temperature, but rather may reflect proximity to cultivated areas or tourist lodges with greater access to human food.
American Journal of Physical Anthropology | 1996
Fred Anapol; Karen Barry
Fiber architecture of the extensor musculature of the knee and ankle is examined in two African gueon species--the semiterrestrial Cercopithecus aethiops, and the arboreal C. ascanius. Using histologic and microscopic techniques to measure lengths of sarcomeres, the original lengths of muscle fasciculi and angles of pinnation in quadriceps femoris and triceps surae are reconstructed from direct measurements on cadavers. Calculations of reduced physiological cross-sectional area, mass/predicted effective tetanic tension, maximum excursion, and tendon length/fasciculus+tendon lengths are correlated to preferred locomotor modalities in the wild. For both species, greater morphological differences occur among the bellies of quadriceps femoris--rectus femoris, vastus intermedius, v. lateralis, and v. medialis--than among the bellies of triceps surae--gastrocnemius lateralis, g. medialis, plantaris, and soleus. With regard to quadriceps femoris, few differences occur between species. Interspecific differences in the triceps surae indicate (1) redirection of muscle force to accommodate arboreality in which the substrate is less than body width; (2) muscles more suited for velocity in the semiterrestrial vervets; and (3) muscles used more isotonically in vervets and more isometrically in red-tailed monkeys. The inherent flexibility of muscles may be preadaptive to a primary species shift in locomotor modality until the bony morphology is able to adapt through natural selection.
Journal of Human Evolution | 1992
John G. Fleagle; Fred Anapol
Abstract In their now classic paper, Napier & Walker (1967) noted that primate vertical clingers and leapers are unusual among mammalian leapers in having a relatively short ischium. In this paper we propose that the short ischium in vertical clingers and leapers reflects the fact that this bone has been reoriented to increase its dorsal projection. The short, dorsally projecting ischium of vertical clingers and leapers is functionally analogous with that of bipedal hominids and related to regular use of an extended hip joint. Morphometric comparisons of ischial shape in a wide range of prosimians and platyrrhines, together with a review of the naturalistic locomotion and posture of these species, supports the association between dorsally projecting ischia and frequent leaping from vertical supports. A brief examination of the ischia of several Eocene prosimians indicates that these taxa regularly lept from vertical supports. On the basis of our studies of primate ischium and a consideration of our present understanding of prosimian phylogeny, we feel it is not possible to accurately reconstruct the phylogeny of vertical clinging and leaping adaptations in early primate evolution or to reject Napier and Walkers hypothesis that this is the initial locomotor adaptation among cuprimates.
American Journal of Physical Anthropology | 2009
Callum F. Ross; David A. Reed; Rhyan L. Washington; Alison Eckhardt; Fred Anapol; Nazima Shahnoor
The biomechanical determinants of the scaling of chew cycle duration are important components of models of primate feeding systems at all levels, from the neuromechanical to the ecological. Chew cycle durations were estimated in 35 species of primates and analyzed in conjunction with data on morphological variables of the feeding system estimating moment of inertia of the mandible and force production capacity of the chewing muscles. Data on scaling of primate chew cycle duration were compared with the predictions of simple pendulum and forced mass-spring system models of the feeding system. The gravity-driven pendulum model best predicts the observed cycle duration scaling but is rejected as biomechanically unrealistic. The forced mass-spring model predicts larger increases in chew cycle duration with size than observed, but provides reasonable predictions of cycle duration scaling. We hypothesize that intrinsic properties of the muscles predict spring-like behavior of the jaw elevator muscles during opening and fast close phases of the jaw cycle and that modulation of stiffness by the central nervous system leads to spring-like properties during the slow close/power stroke phase. Strepsirrhines show no predictable relationship between chew cycle duration and jaw length. Anthropoids have longer chew cycle durations than nonprimate mammals with similar mandible lengths, possibly due to their enlarged symphyses, which increase the moment of inertia of the mandible. Deviations from general scaling trends suggest that both scaling of the jaw muscles and the inertial properties of the mandible are important in determining the scaling of chew cycle duration in primates.
American Journal of Physical Anthropology | 2009
Andrea B. Taylor; Carolyn M. Eng; Fred Anapol; Christopher J. Vinyard
Common (Callithrix jacchus) and pygmy (Cebuella pygmaea) marmosets and cotton-top tamarins (Saguinus oedipus) share broadly similar diets of fruits, insects, and tree exudates. Marmosets, however, differ from tamarins in actively gouging trees with their anterior dentition to elicit tree exudates flow. Tree gouging in common marmosets involves the generation of relatively wide jaw gapes, but not necessarily relatively large bite forces. We compared fiber architecture of the masseter and temporalis muscles in C. jacchus (N = 18), C. pygmaea (N = 5), and S. oedipus (N = 13). We tested the hypothesis that tree-gouging marmosets would exhibit relatively longer fibers and other architectural variables that facilitate muscle stretch. As an architectural trade-off between maximizing muscle excursion/contraction velocity and muscle force, we also tested the hypothesis that marmosets would exhibit relatively less pinnate fibers, smaller physiologic cross-sectional areas (PCSA), and lower priority indices (I) for force. As predicted, marmosets display relatively longer-fibered muscles, a higher ratio of fiber length to muscle mass, and a relatively greater potential excursion of the distal tendon attachments, all of which favor muscle stretch. Marmosets further display relatively smaller PCSAs and other features that reflect a reduced capacity for force generation. The longer fibers and attendant higher contraction velocities likely facilitate the production of relatively wide jaw gapes and the capacity to generate more power from their jaw muscles during gouging. The observed functional trade-off between muscle excursion/contraction velocity and muscle force suggests that primate jaw-muscle architecture reflects evolutionary changes related to jaw movements as one of a number of functional demands imposed on the masticatory apparatus.
Journal of Morphology | 2011
Laura B. Porro; Casey M. Holliday; Fred Anapol; Lupita C. Ontiveros; Lolita T. Ontiveros; Callum F. Ross
The mechanical behavior of mammalian mandibles is well‐studied, but a comprehensive biomechanical analysis (incorporating detailed muscle architecture, accurate material properties, and three‐dimensional mechanical behavior) of an extant archosaur mandible has never been carried out. This makes it unclear how closely models of extant and extinct archosaur mandibles reflect reality and prevents comparisons of structure–function relationships in mammalian and archosaur mandibles. We tested hypotheses regarding the mechanical behavior of the mandible of Alligator mississippiensis by analyzing reaction forces and bending, shear, and torsional stress regimes in six models of varying complexity. Models included free body analysis using basic lever arm mechanics, 2D and 3D beam models, and three high‐resolution finite element models of the Alligator mandible, incorporating, respectively, isotropic bone without sutures, anisotropic bone with sutures, and anisotropic bone with sutures and contact between the mandible and the pterygoid flange. Compared with the beam models, the Alligator finite element models exhibited less spatial variability in dorsoventral bending and sagittal shear stress, as well as lower peak values for these stresses, suggesting that Alligator mandibular morphology is in part designed to reduce these stresses during biting. However, the Alligator models exhibited greater variability in the distribution of mediolateral and torsional stresses than the beam models. Incorporating anisotropic bone material properties and sutures into the model reduced dorsoventral and torsional stresses within the mandible, but led to elevated mediolateral stresses. These mediolateral stresses were mitigated by the addition of a pterygoid‐mandibular contact, suggesting important contributions from, and trade‐offs between, material properties and external constraints in Alligator mandible design. Our results suggest that beam modeling does not accurately represent the mechanical behavior of the Alligator mandible, including important performance metrics such as magnitude and orientation of reaction forces, and mediolateral bending and torsional stress distributions. J.Morphol. 2011.
Journal of Anatomy | 2011
David A. Reed; Laura B. Porro; Jose Iriarte-Diaz; Justin B. Lemberg; Casey M. Holliday; Fred Anapol; Callum F. Ross
The functional effects of bone and suture stiffness were considered here using finite element models representing three different theoretical phenotypes of an Alligator mississippiensis mandible. The models were loaded using force estimates derived from muscle architecture in dissected specimens, constrained at the 18th and 19th teeth in the upper jaw and 19th tooth of the lower jaw, as well as at the quadrate‐articular joint. Stiffness was varied systematically in each theoretical phenotype. The three theoretical phenotypes included: (i) linear elastic isotropic bone of varying stiffness and no sutures; (ii) linear elastic orthotropic bone of varying stiffness with no sutures; and (iii) linear elastic isotropic bone of a constant stiffness with varying suture stiffness. Variation in the isotropic material properties of bone primarily resulted in changes in the magnitude of principal strain. By comparison, variation in the orthotropic material properties of bone and isotropic material properties of sutures resulted in: a greater number of bricks becoming either more compressive or more tensile, changing between being either dominantly compressive or tensile, and having larger changes in the orientation of maximum principal strain. These data indicate that variation in these model properties resulted in changes to the strain regime of the model, highlighting the importance of using biologically verified material properties when modeling vertebrate bones. When bones were compared within each set, the response of each to changing material properties varied. In two of the 12 bones in the mandible, varied material properties within sutures resulted in a decrease in the magnitude of principal strain in bricks adjacent to the bone/suture interface and decreases in stored elastic energy. The varied response of the mandibular bones to changes in suture stiffness highlights the importance of defining the appropriate functional unit when addressing relationships of performance and morphology.
American Journal of Physical Anthropology | 2000
Fred Anapol; Susan W. Herring
In this study of masticatory maturation, the ontogeny of the histochemical fiber type composition of musculus masseter is examined in the omnivorous miniature swine (Sus scrofa). Fiber type characteristics are interpreted by comparison with electromyography (EMG) recorded during feeding behavior. Similar to locomotion studies, the results suggest a correspondence between the composition and arrangement of motor units and their recruitment pattern. Serial sections of masseter muscles from 10 minipigs, ranging from 2 weeks to slightly over 1 year of age, were stained for myosin adenosine triphosphatase (mATPase) activity to distinguish slow-twitch from fast-twitch fibers, and for nicotinamide adenosine dehydrogenase-tetrazolium reductase to assess the aerobic capacity of the same fibers. Although maintaining a uniformly high aerobic capacity throughout ontogeny and in adult animals, a transition is observed in the relative proportions of fast- and slow-twitch fibers. The primarily fast-twitch neonatal pig masseter eventually comprises approximately 25-30% slow-twitch fibers in adults, with a higher predominance of slow fibers in the deep (vs. superficial) and anterior (vs. posterior) regions of the muscle. Furthermore, while individual fibers of adult masseters generally stain for either alkaline- or acid-stable mATPase activity, a substantial proportion of cells in developing animals exhibits the presence of both isozymes. EMG results indicate functional heterogeneity within the masseter of adult pigs. During chewing, when pig chow is replaced by cracked corn, EMG activity in the deep portion of the muscle either decreases or increases slightly. In the superficial portion, however, muscle amplitudes become dramatically higher for corn, surpassing levels generated for chewing the less obdurate chow. These results are consistent with a behavioral transition from neonatal suckling to sustained mastication of foods of more complex textures eaten by adult pigs. The relationship between these fiber type and EMG results for pig masseter corresponds to those pertaining to motor unit recruitment in the extensor muscles of locomotion. Implications of this work for the evolutionary morphology of mastication also are discussed.
Archive | 2009
Andrea B. Taylor; Carolyn M. Eng; Fred Anapol; Christopher J. Vinyard
Marmoset species are specialized gummivorous callitrichids that gouge holes in trees to stimulate the flow of exudate. Recent experimental studies suggest that when common marmosets (Callithrix jacchus) gouge trees in the wild, they do so with jaw gapes approaching their maximum structural capacity for jaw opening. Common marmosets also have relatively elongated mandibular condyles (extending the radius of curvature) and glenoid articular surfaces, and low mandibular condyles relative to the height of the tooth row, features that are advantageous in improving the capacity to generate wide jaw gapes.
American Journal of Physical Anthropology | 1994
Fred Anapol; Sarah Lee