Fred D. Sack
University of British Columbia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fred D. Sack.
International Review of Cytology-a Survey of Cell Biology | 1991
Fred D. Sack
This review of plant gravity sensing examines sensing in organ gravitropism, sensing in single-cell gravitropism, and nongravitropic sensing. Topics related to sensing in organ gravitropism are (1) identification of the gravitropic susceptors, including intracellular asymmetry in equilibrium position and after reorientation, susceptor signal-to-noise ratio, signal integration over threshold stimulation periods, intracellular asymmetry and gravitropic competence, and starch deficiency and gravitropic competence; (2) possible root statocytes and receptors, including identification of presumptive statocytes, cytology, and possible receptors and models of sensing; and (3) negatively gravitropic organs, including identification and distribution of presumptive statocytes and cytology and possible receptors. Topics related to nongravitropic sensing include gravitaxis, reaction wood, gravimorphogenesis, other gravity-influenced organ movements, and cytoplasmic streaming.
Planta | 1989
John Z. Kiss; Rainer Hertel; Fred D. Sack
The observation that a starchless mutant (TC7) of Arabidopsis thaliana (L.) Heynh. is gravitropic (T. Caspar and B.G. Pickard, 1989, Planta 177, 185–197) raises questions about the hypothesis that starch and amyloplasts play a role in gravity perception. We compared the kinetics of gravitropism in this starchless mutant and the wild-type (WT). Wild-type roots are more responsive to gravity than TC7 roots as judged by several parameters: (1) Vertically grown TC7 roots were not as oriented with respect to the gravity vector as WT roots. (2) In the time course of curvature after gravistimulation, curvature in TC7 roots was delayed and reduced compared to WT roots. (3) TC7 roots curved less than WT roots following a single, short (induction) period of gravistimulation, and WT, but not TC7, roots curved in response to a 1-min period of horizontal exposure. (4) Wild-type roots curved much more than TC7 roots in response to intermittent stimulation (repeated short periods of horizontal exposure); WT roots curved in response to 10 s of stimulation or less, but TC7 roots required 2 min of stimulation to produce a curvature. The growth rates were equal for both genotypes. We conclude that WT roots are more sensitive to gravity than TC7 roots. Starch is not required for gravity perception in TC7 roots, but is necessary for full sensitivity; thus it is likely that amyloplasts function as statoliths in WT Arabidopsis roots. Furthermore, since centrifugation studies using low gravitational forces indicated that starchless plastids are relatively dense and are the most movable component in TC7 columella cells, the starchless plastids may also function as statoliths.
The Plant Cell | 1995
Ming Yang; Fred D. Sack
Stomata regulate gas exchange through the aerial plant epidermis by controlling the width of a pore bordered by two guard cells. Little is known about the genes that regulate stomatal development. We screened cotyledons from ethyl methanesulfonate-mutagenized seeds of Arabidopsis by light microscopy to identify mutants with altered stomatal morphology. Two mutants, designated too many mouths (tmm) and four lips (flp), were isolated with extra adjacent stomata. The tmm mutation results in stomatal clustering and increased precursor cell formation in cotyledons and a virtual absence of stomata in the inflorescence stem. The flp mutation results in many paired stomata and a small percentage of unpaired guard cells in cotyledons. The double mutant (tmm flp) exhibits aspects of both parental phenotypes. Both mutations appear to affect stomatal production more than patterning or differentiation. tmm regulates stomatal production by controlling the formation, and probably the activity, of the stomatal precursor cell.
Planta | 1997
Fred D. Sack
Abstract. Data and theories about the identity of the mass that acts in gravitropic sensing are reviewed. Gravity sensing may have evolved several times in plants and algae in processes such as gravitropism of organs and tip-growing cells, gravimorphism, gravitaxis, and the regulation of cytoplasmic streaming in internodal cells of Chara. In the latter and in gravitaxis, the mass of the entire cell may function in sensing. But gravitropic sensing appears to rely upon the mass of amyloplasts that sediment since (i) the location of cells with sedimentation is highly regulated, (ii) such cells contain other morphological specializations favoring sedimentation, (iii) sedimentation always correlates with gravitropic competence in wild-type plants, (iv) magnetophoretic movement of rootcap amyloplasts mimics gravitropism, and (v) starchless and intermediate starch mutants show reduced gravitropic sensitivity. The simplest interpretation of these data is that gravitropic sensing is plastid-based.
The Plant Cell | 2000
Matt J. Geisler; Jeanette A. Nadeau; Fred D. Sack
Wild-type stomata are spaced by intervening cells, a pattern disrupted in the Arabidopsis mutant too many mouths (tmm). To determine the mechanism of wild-type spacing and how tmm results in pattern violations, we analyzed the behavior of cells through time by using sequential dental resin impressions. Meristemoids are stomatal precursors produced by asymmetric division. We show that wild-type patterning largely results when divisions next to a preexisting stoma or precursor are oriented so that the new meristemoid is placed away. Because this placement is independent of cell lineage, these divisions may be oriented by cell–cell signaling. tmm randomizes this orientation and releases a prohibition on asymmetric division in cells at specific locations, resulting in stomatal clusters. TMM is thus necessary for two position-dependent events in leaves: the orientation of asymmetric divisions that pattern stomata, and the control of which cells will enter the stomatal pathway. In addition, our findings argue against most previous hypotheses of wild-type stomatal patterning.
The Plant Cell | 1997
John C. Larkin; M D Marks; J Nadeau; Fred D. Sack
that ma- ture differentiated cells are distributed in a characteristic pattern. One of the simplest possible patterns in tissues is that in which a minimum distance is maintained between dif- ferentiated cells in a two-dimensional sheet of cells (Wolpert, 1971). Such a pattern could be created by several different mechanisms. For example, the initial positioning of precur- sor cells could be random within a field of equally compe- tent cells, with adjacent cells subsequently prevented from assuming the precursor cell fate by lateral inhibition. Alter- natively, a prepatterning could exist so that the selection or placement of the precursor cells is nonrandom. Regardless of how precursor cells are placed, the production of new cells from a precursor cell can also contribute to the final spacing pattern (Sachs, 1978). Although the molecular inter- actions guiding patterning are known for such model sys- tems as epidermal bristle formation in Drosophila (Ghysen et al., 1993), little is known about the nature of the intercellular signaling that establishes cell patterning in plants (see Clark, 1997; Kerstetter and Hake, 1997; Laux and Jurgens, 1997; McLean et al., 1997; Poethig, 1997; and Schiefelbein et al., 1997, in this issue, for further discussion). The epidermis of plant leaves provides an excellent
The Plant Cell | 2005
Lien B. Lai; Jeanette A. Nadeau; Jessica R. Lucas; EunKyoung Lee; Tsuyoshi Nakagawa; Liming Zhao; Matt J. Geisler; Fred D. Sack
The two guard cells of a stoma are produced by a single symmetric division just before terminal differentiation. Recessive mutations in the FOUR LIPS (FLP) gene abnormally induce at least four guard cells in contact with one another. These pattern defects result from a persistence of precursor cell identity that leads to extra symmetric divisions at the end of the cell lineage. FLP is likely to be required for the correct timing of the transition from cell cycling to terminal differentiation. FLP encodes a two-repeat (R2R3) MYB protein whose expression accumulates just before the symmetric division. A paralogous gene, MYB88, overlaps with FLP function in generating normal stomatal patterning. Plants homozygous for mutations in both genes exhibit more severe defects than flp alone, and transformation of flp plants with a genomic MYB88 construct restores a wild-type phenotype. Both genes compose a distinct and relatively basal clade of atypical R2R3 MYB proteins that possess an unusual pattern of amino acid substitutions in their putative DNA binding domains. Our results suggest that two related transcription factors jointly restrict divisions late in the Arabidopsis thaliana stomatal cell lineage.
The Arabidopsis Book | 2002
Jeanette A. Nadeau; Fred D. Sack
Abstract Stomata consist of two guard cells around a pore and act as turgor-operated valves for gas exchange. Arabidopsis stomata develop from one or more asymmetric divisions followed by the symmetric division of the guard mother cell. Stomatal number is partly a function of the availability of smaller epidermal cells that are competent to divide asymmetrically. Stomata are spaced apart from each other by at least one neighbor cell. Pattern generation may involve cell-cell signaling that transmits spatial cues used to orient specific classes of asymmetric divisions. TOO MANY MOUTHS may function in receiving or transducing these cues to orient asymmetric divisions. TMM also is a negative or positive regulator of entry into the stomatal pathway, with the direction of the response dependent on organ and location. STOMATAL DENSITY AND DISTRIBUTION1 is a negative regulator of stomatal formation throughout the shoot and encodes a processing protease that may function in intercellular communication. FOUR LIPS apparently controls the number symmetric divisions at the guard mother cell stage. In some organs, such as the hypocotyl, the placement of stomata may be coordinated with internal features and involves genes that also regulate root hair and trichome formation. Other mutations affect guard cell morphogenesis, cytokinesis, and stomatal number in response to carbon dioxide concentration. The molecular analysis of stomatal development promises advances in understanding intercellular signaling, the control of the plane and polarity of asymmetric division, the specification of cell fate, and the regulation of cell differentiation and shape.
American Journal of Botany | 1999
Liming Zhao; Fred D. Sack
Stomatal development was studied in wild-type Arabidopsis leaves using light and electron microscopy. Development involves three successive types of stomatal precursor cells: meristemoid mother cells, meristemoids, and guard mother cells (GMCs). The first two types divide asymmetrically, whereas GMCs divide symmetrically. Analysis of cell wall patterns indicates that meristemoids can divide asymmetrically a variable number of times. Before meristemoid division, the nucleus and a preprophase band of microtubules become located on one side of the cell, and the vacuole on the other. Meristemoids are often triangular in shape and have evenly thickened walls. GMCs can be detected by their roughly oval shape, increased starch accumulation, and wall thickenings on opposite ends of the cells. Because these features are also found in developing stomata, stomatal differentiation begins in GMCs. The wall thickenings mark the division site in the GMC since they overlie a preprophase band of microtubules and occur where the cell plate fuses with the parent cell wall. Stomatal differentiation in Arabidopsis resembles that of other genera with kidney-shaped guard cells. This identification of stages in stomatal development in wild-type Arabidopsis provides a foundation for the analysis of relevant genes and of mutants defective in stomatal patterning, cell specification, and differentiation.
The Plant Cell | 2010
Zidian Xie; EunKyoung Lee; Jessica R. Lucas; Kengo Morohashi; Dongmei Li; James Augustus Henry Murray; Fred D. Sack; Erich Grotewold
The MYB protein FOUR LIPS (FLP) promotes Arabidopsis stomatal patterning by suppressing cell division before differentiation. FLP direct targets were found to be enriched in cell cycle genes that function in both S-G1 and G2-M phase, indicating that this transcription factor acts as a developmental integrator. Stomata, which are epidermal pores surrounded by two guard cells, develop from a specialized stem cell lineage and function in shoot gas exchange. The Arabidopsis thaliana FOUR LIPS (FLP) and MYB88 genes encode closely related and atypical two-MYB-repeat proteins, which when mutated result in excess divisions and abnormal groups of stomata in contact. Consistent with a role in transcription, we show here that FLP and MYB88 are nuclear proteins with DNA binding preferences distinct from other known MYBs. To identify possible FLP/MYB88 transcriptional targets, we used chromatin immunoprecitation (ChIP) followed by hybridization to Arabidopsis whole genome tiling arrays. These ChIP-chip data indicate that FLP/MYB88 target the upstream regions especially of cell cycle genes, including cyclins, cyclin-dependent kinases (CDKs), and components of the prereplication complex. In particular, we show that FLP represses the expression of the mitosis-inducing factor CDKB1;1, which, along with CDKB1;2, is specifically required both for the last division in the stomatal pathway and for cell overproliferation in flp mutants. We propose that FLP and MYB88 together integrate patterning with the control of cell cycle progression and terminal differentiation through multiple and direct cell cycle targets. FLP recognizes a distinct cis-regulatory element that overlaps with that of the cell cycle activator E2F-DP in the CDKB1;1 promoter, suggesting that these MYBs may also modulate E2F-DP pathways.