Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fred Gould is active.

Publication


Featured researches published by Fred Gould.


Nature Reviews Genetics | 2006

Gene drive systems for insect disease vectors

Steven P. Sinkins; Fred Gould

The elegant mechanisms by which naturally occurring selfish genetic elements, such as transposable elements, meiotic drive genes, homing endonuclease genes and Wolbachia, spread at the expense of their hosts provide some of the most fascinating and remarkable subjects in evolutionary genetics. These elements also have enormous untapped potential to be used in the control of some of the worlds most devastating diseases. Effective gene drive systems for spreading genes that can block the transmission of insect-borne pathogens are much needed. Here we explore the potential of natural gene drive systems and discuss the artificial constructs that could be envisaged for this purpose.


Journal of Evolutionary Biology | 2004

Delaying evolution of insect resistance to transgenic crops by decreasing dominance and heritability

Bruce E. Tabashnik; Fred Gould; Yves Carrière

The refuge strategy is used widely for delaying evolution of insect resistance to transgenic crops that produce Bacillus thuringiensis (Bt) toxins. Farmers grow refuges of host plants that do not produce Bt toxins to promote survival of susceptible pests. Many modelling studies predict that refuges will delay resistance longest if alleles conferring resistance are rare, most resistant adults mate with susceptible adults, and Bt plants have sufficiently high toxin concentration to kill heterozygous progeny from such matings. In contrast, based on their model of the cotton pest Heliothis virescens, Vacher et al. (Journal of Evolutionary Biology, 16, 2003, 378) concluded that low rather than high toxin doses would delay resistance most effectively. We demonstrate here that their conclusion arises from invalid assumptions about larval concentration‐mortality responses and dominance of resistance. Incorporation of bioassay data from H. virescens and another key cotton pest (Pectinophora gossypiella) into a population genetic model shows that toxin concentrations high enough to kill all or nearly all heterozygotes should delay resistance longer than lower concentrations.


Entomologia Experimentalis Et Applicata | 1991

Effects of natural enemies on the rate of herbivore adaptation to resistant host plants

Fred Gould; George G. Kennedy; M.T. Johnson

The potential of natural enemies to influence the rate of herbivore adaptation to resistance factors in plants is examined using conceptual and mathematical models. Results indicate that natural enemies could increase or decrease the rate of herbivore adaptation. The specific behavioral and physiological effects of a resistance factor on the herbivore, as well as the behavior of the natural enemy, and the population dynamics of the natural enemy/herbivore system are important in assessing the extent to which the natural enemies will affect the rate of herbivore adaptation to a resistance factor. Herbivore adaptation to partial resistance in a host‐plant is generally expected to be slower than adaptation to high levels of resistance, even in the presence of natural enemies, if genetic variance is not limiting.


Evolution | 2013

THE IMPORTANCE OF MOSQUITO BEHAVIOURAL ADAPTATIONS TO MALARIA CONTROL IN AFRICA

Michelle L. Gatton; Nakul Chitnis; Thomas S. Churcher; Martin J. Donnelly; Azra C. Ghani; H. Charles J. Godfray; Fred Gould; Ian M. Hastings; John Marshall; Hilary Ranson; Mark Rowland; Jeffrey Shaman; Steve W. Lindsay

Over the past decade the use of long‐lasting insecticidal nets (LLINs), in combination with improved drug therapies, indoor residual spraying (IRS), and better health infrastructure, has helped reduce malaria in many African countries for the first time in a generation. However, insecticide resistance in the vector is an evolving threat to these gains. We review emerging and historical data on behavioral resistance in response to LLINs and IRS. Overall the current literature suggests behavioral and species changes may be emerging, but the data are sparse and, at times unconvincing. However, preliminary modeling has demonstrated that behavioral resistance could have significant impacts on the effectiveness of malaria control. We propose seven recommendations to improve understanding of resistance in malaria vectors. Determining the public health impact of physiological and behavioral insecticide resistance is an urgent priority if we are to maintain the significant gains made in reducing malaria morbidity and mortality.


Biocontrol Science and Technology | 1994

Potential and problems with high‐dose strategies for pesticidal engineered crops

Fred Gould

We lack an empirical basis on which to judge the expected durability of crops that express one or more insecticidal proteins and must therefore rely upon theoretical population genetic models in assessing how best to delay pest adaptation to these toxins. A number of studies using such models indicate that expression of toxins at very high levels could slow pest adaptation to a crawl if the ecology and genetics of the pest and cropping system fit specific assumptions. These assumptions relate to: (1) inheritance of resistance factors; (2) ecological costs of resistance factors; (3) behavioral response of larvae and adults to the toxins; (4) plant‐to‐plant movement of larvae; (5) adult dispersal and mating behavior; and (6) distribution of host plants that do and do not produce the toxin(s). This paper includes a discussion of whether the biology of insect pests of a number of cropping systems that are targets for toxin‐expressing plants fit assumptions that are conducive to slowing pest adaptation. Emphas...


PLOS Neglected Tropical Diseases | 2015

A Critical Assessment of Vector Control for Dengue Prevention

Nicole L. Achee; Fred Gould; T. Alex Perkins; Robert C. Reiner; Amy C. Morrison; Scott A. Ritchie; Duane J. Gubler; Rémy Teyssou; Thomas W. Scott

Recently, the Vaccines to Vaccinate (v2V) initiative was reconfigured into the Partnership for Dengue Control (PDC), a multi-sponsored and independent initiative. This redirection is consistent with the growing consensus among the dengue-prevention community that no single intervention will be sufficient to control dengue disease. The PDCs expectation is that when an effective dengue virus (DENV) vaccine is commercially available, the public health community will continue to rely on vector control because the two strategies complement and enhance one another. Although the concept of integrated intervention for dengue prevention is gaining increasingly broader acceptance, to date, no consensus has been reached regarding the details of how and what combination of approaches can be most effectively implemented to manage disease. To fill that gap, the PDC proposed a three step process: (1) a critical assessment of current vector control tools and those under development, (2) outlining a research agenda for determining, in a definitive way, what existing tools work best, and (3) determining how to combine the best vector control options, which have systematically been defined in this process, with DENV vaccines. To address the first step, the PDC convened a meeting of international experts during November 2013 in Washington, DC, to critically assess existing vector control interventions and tools under development. This report summarizes those deliberations.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Bacillus thuringiensis-toxin resistance management: Stable isotope assessment of alternate host use by Helicoverpa zea

Fred Gould; Neal E. Blair; M. Reid; T. L. Rennie; Juan D. López; Stephen Micinski

Data have been lacking on the proportion of Helicovera zea larvae that develop on noncotton host plants that can serve as a refuge from selection pressure for adaptation to transgenic cotton varieties that produce a toxin from the bacterium Bacillus thuringiensis. We found that individual H. zea moths that develop as larvae on cotton and other plants with C3 physiology have a different ratio of 13C to 12C than moths that develop on plants with C4 physiology, such as corn. We used this finding in determining the minimum percentage of moths that developed on noncotton hosts in two cotton-growing areas. Our results indicate that local corn can serve as a refuge for H. zea in midsummer. Our results contrast dramatically with the prevailing hypothesis that the large majority of late-season moths are produced from larvae feeding on cotton, soybean, and other C3 plants. Typically, <50% of moths captured in August through October have isotope ratios indicative of larval feeding on C3 plants. In one October sample, 100% of the moths originated from C4 hosts even though C4 crops were harvested at least 1 mo earlier, and no common wild C4 hosts were available. These findings support other research indicating that many late-season H. zea moths captured in Louisiana and Texas are migrants whose larvae developed on corn in more northern locations. Our isotope data on moths collected in Texas early in the season indicate that the majority of overwintering H. zea do not originate from cotton-feeding larvae and may be migrants from Mexico. Non-Bt corn in Mexico and the U.S. corn belt appears to serve as an important refuge for H. zea.


PLOS Neglected Tropical Diseases | 2009

Skeeter Buster: a stochastic, spatially explicit modeling tool for studying Aedes aegypti population replacement and population suppression strategies.

Krisztian Magori; Mathieu Legros; Molly Puente; Dana A. Focks; Thomas W. Scott; Alun L. Lloyd; Fred Gould

Background Dengue is the most important mosquito-borne viral disease affecting humans. The only prevention measure currently available is the control of its vectors, primarily Aedes aegypti. Recent advances in genetic engineering have opened the possibility for a new range of control strategies based on genetically modified mosquitoes. Assessing the potential efficacy of genetic (and conventional) strategies requires the availability of modeling tools that accurately describe the dynamics and genetics of Ae. aegypti populations. Methodology/Principal findings We describe in this paper a new modeling tool of Ae. aegypti population dynamics and genetics named Skeeter Buster. This model operates at the scale of individual water-filled containers for immature stages and individual properties (houses) for adults. The biology of cohorts of mosquitoes is modeled based on the algorithms used in the non-spatial Container Inhabiting Mosquitoes Simulation Model (CIMSiM). Additional features incorporated into Skeeter Buster include stochasticity, spatial structure and detailed population genetics. We observe that the stochastic modeling of individual containers in Skeeter Buster is associated with a strongly reduced temporal variation in stage-specific population densities. We show that heterogeneity in container composition of individual properties has a major impact on spatial heterogeneity in population density between properties. We detail how adult dispersal reduces this spatial heterogeneity. Finally, we present the predicted genetic structure of the population by calculating FST values and isolation by distance patterns, and examine the effects of adult dispersal and container movement between properties. Conclusions/Significance We demonstrate that the incorporated stochasticity and level of spatial detail have major impacts on the simulated population dynamics, which could potentially impact predictions in terms of control measures. The capacity to describe population genetics confers the ability to model the outcome of genetic control methods. Skeeter Buster is therefore an important tool to model Ae. aegypti populations and the outcome of vector control measures.


PLOS ONE | 2011

Reduced Levels of Membrane-Bound Alkaline Phosphatase Are Common to Lepidopteran Strains Resistant to Cry Toxins from Bacillus thuringiensis

Juan Luis Jurat-Fuentes; Lohitash Karumbaiah; S.R.K. Jakka; Changming Ning; Chenxi Liu; Kongming Wu; Jerreme Jackson; Fred Gould; Carlos A. Blanco; Maribel Portilla; Omaththage P. Perera; Michael J. Adang

Development of insect resistance is one of the main concerns with the use of transgenic crops expressing Cry toxins from the bacterium Bacillus thuringiensis. Identification of biomarkers would assist in the development of sensitive DNA-based methods to monitor evolution of resistance to Bt toxins in natural populations. We report on the proteomic and genomic detection of reduced levels of midgut membrane-bound alkaline phosphatase (mALP) as a common feature in strains of Cry-resistant Heliothis virescens, Helicoverpa armigera and Spodoptera frugiperda when compared to susceptible larvae. Reduced levels of H. virescens mALP protein (HvmALP) were detected by two dimensional differential in-gel electrophoresis (2D-DIGE) analysis in Cry-resistant compared to susceptible larvae, further supported by alkaline phosphatase activity assays and Western blotting. Through quantitative real-time polymerase chain reaction (qRT-PCR) we demonstrate that the reduction in HvmALP protein levels in resistant larvae are the result of reduced transcript amounts. Similar reductions in ALP activity and mALP transcript levels were also detected for a Cry1Ac-resistant strain of H. armigera and field-derived strains of S. frugiperda resistant to Cry1Fa. Considering the unique resistance and cross-resistance phenotypes of the insect strains used in this work, our data suggest that reduced mALP expression should be targeted for development of effective biomarkers for resistance to Cry toxins in lepidopteran pests.


Journal of Biological Chemistry | 1996

Role of Domain II, Loop 2 Residues of Bacillus thuringiensis CryIAb δ-Endotoxin in Reversible and Irreversible Binding to Manduca sexta and Heliothis virescens

Francis Rajamohan; Jeffrey A. Cotrill; Fred Gould; Donald H. Dean

Site-directed mutagenesis was used to examine the role of domain II, loop 2 residues, 368RRPFNIGI375, of Bacillus thuringiensis insecticidal protein CryIAb. Alanine substitution of residues 368RRP370, called B4, abolished potency toward Manduca sexta and Heliothis virescens, and the loss of toxicity was correlated directly to substantially reduced binding affinity to brush-border membrane vesicles (BBMV) prepared from the target insect midguts. These results indicated that these positive charges might be essential to orient the toxin to midgut receptor molecule(s). The role of residue Phe371 of CryIAb toxin to M. sexta was investigated by substituting a series of residues at this position. Irreversible binding and toxicity were affected significantly by hydrophilic, aliphatic, and smaller side-chain residues such as Cys, Val, Leu, and Ser but not by Tyr or Trp. A hydrophobic aromatic side-chain residue at position 371 was therefore essential for irreversible binding of CryIAb toxin in M. sexta. The role of residues 370PFNIGI375 of CryIAb toxin on H. virescens was also examined. Mutants D2 (deletion of residues 370-375), G374A (alanine substitution of Gly374), and I375A had reduced toxicity to H. virescens. In contrast to our findings with M. sexta, the reduction in toxicity of these mutants was correlated directly with loss of initial binding to H. virescens BBMV, indicating that these residues perform functionally distinct roles in binding and toxicity to different insects. In ligand blots, CryIAb recognized a major 210-kDa peptide in M. sexta BBMV and a 170-kDa peptide in H. virescens BBMV.

Collaboration


Dive into the Fred Gould's collaboration.

Top Co-Authors

Avatar

Alun L. Lloyd

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

George G. Kennedy

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Coby Schal

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Mathieu Legros

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yunxin Huang

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Kongming Wu

Huazhong University of Science and Technology

View shared research outputs
Top Co-Authors

Avatar

Cavell Brownie

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge