Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fred R. Rurangirwa is active.

Publication


Featured researches published by Fred R. Rurangirwa.


International Journal of Systematic and Evolutionary Microbiology | 1999

Analysis of the 16S rRNA gene of micro-organism WSU 86-1044 from an aborted bovine foetus reveals that it is a member of the order Chlamydiales: proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov.

Fred R. Rurangirwa; Pamela M. Dilbeck; Timothy B. Crawford; Travis C. McGuire; Terry F. McElwain

The structural gene encoding the 16S rRNA of the new obligate intracellular organism presently designated WSU 86-1044T was sequenced and analysed to establish its phylogenetic relationships. The 16S rDNA sequence was most closely related to those of chlamydial species, having 84.7-85.3% sequence similarity, while it had 72.4-73.2% similarity with rickettsia-like organisms. When the sequences of the four species of chlamydiae (Chlamydophila psittaci, Chlamydia trachomatis, Chlamydophila pneumoniae and Chlamydophila pecorum) were compared, they had > 93% sequence similarity indicating that WSU 86-1044T was not close enough to be in the same family as current Chlamydiaceae members. However, based on the 84.7-85.3% 16S rDNA sequence similarity of WSU 86-1044T and other previously described characteristics, WSU 86-1044T belongs to a novel family within the order Chlamydiales; hence, the proposal of Waddliaceae fam. nov., Waddlia chondrophila gen. nov., sp. nov.


Parasitology Today | 1999

Molecular Basis for Vaccine Development against the Ehrlichial Pathogen Anaplasma marginale

Guy H. Palmer; Fred R. Rurangirwa; Katherine M. Kocan; Wendy C. Brown

Anaplasma marginale is a tick-transmitted ehrlichial pathogen causing severe morbidity and mortality in livestock on six continents. Development of safe effective vaccines would be greatly facilitated by identification of the protective immune mechanisms and by understanding how the pathogen evades immune effectors to establish persistent infection. In this article, Guy Palmer and colleagues review recent progress in identifying how defined epitopes induce protective immunity and the role of antigenic variation in these epitopes as a mechanism of persistence.


Journal of Clinical Microbiology | 2001

Strain Composition of the Ehrlichia Anaplasma marginale within Persistently Infected Cattle, a Mammalian Reservoir for Tick Transmission

Guy H. Palmer; Fred R. Rurangirwa; Terry F. McElwain

ABSTRACT Tick-borne ehrlichial pathogens of animals and humans require a mammalian reservoir of infection from which ticks acquire the organism for subsequent transmission. In the present study, we examined the strain structure of Anaplasma marginale, a genogroup II ehrlichial pathogen, in both an acute outbreak and in persistently infected cattle that serve as a reservoir for tick transmission. Using the msp1α genotype as a stable strain marker, only a single genotype was detected in a disease outbreak in a previously uninfected herd. In contrast, a diverse set of genotypes was detected in a persistently infected reservoir herd within a region whereA. marginale is endemic. Genotypic diversity did not appear to be rapidly generated within an individual animal, because only a single genotype, identical to that of the inoculating strain, was detected at time points up to 2 years after experimental infection, and only a single identical genotype was found in repeat sampling of individual naturally infected cattle. Similarly, only a single genotype, identical to that of the experimentally inoculated St. Maries or South Idaho strain, was identified in the bloodmeal taken byDermacentor andersoni ticks, in the midgut and salivary glands of the infected ticks, and in the blood of acutely infected cattle following tick transmission. The results show that mammalian reservoirs harbor genetically heterogeneous A. marginaleand suggest that different genotypes are maintained by transmission within the reservoir population.


Infection and Immunity | 2000

Antigenic variation of Anaplasma marginale by expression of MSP2 mosaics.

Anthony F. Barbet; Anna M. Lundgren; Jooyoung Yi; Fred R. Rurangirwa; Guy H. Palmer

ABSTRACT Anaplasma marginale is a tick-borne pathogen, one of several closely related ehrlichial organisms that cause disease in animals and humans. These Ehrlichia species have complex life cycles that require, in addition to replication and development within the tick vector, evasion of the immune system in order to persist in the mammalian reservoir host. This complexity requires efficient use of the small ehrlichial genome. A. marginaleand related ehrlichiae express immunoprotective, variable outer membrane proteins that have similar structures and are encoded by polymorphic multigene families. We show here that the major outer membrane protein of A. marginale, MSP2, is encoded on a polycistronic mRNA. The genomic expression site for this mRNA is polymorphic and encodes numerous amino acid sequence variants in bloodstream populations of A. marginale. A potential mechanism for persistence is segmental gene conversion of the expression site to link hypervariable msp2 sequences to the promoter and polycistron.


Microbes and Infection | 2000

Antigenic variation in the persistence and transmission of the ehrlichia Anaplasma marginale.

Guy H. Palmer; Wendy C. Brown; Fred R. Rurangirwa

Tick-borne transmission of ehrlichial pathogens requires rickettsemic reservoir hosts to maintain a population of infected vectors. Persistence in their respective mammalian hosts appears to be a common feature of the tick-transmitted ehrlichiae. How infection persists in immunocompetent hosts is unknown. In this review, we describe studies on Anaplasma marginale, an ehrlichial pathogen of cattle, that support antigenic variation as a primary mechanism of persistence.


Journal of Clinical Microbiology | 2008

Association of Mycoplasma ovipneumoniae Infection with Population-Limiting Respiratory Disease in Free-Ranging Rocky Mountain Bighorn Sheep (Ovis canadensis canadensis)

Thomas E. Besser; E. Frances Cassirer; Kathleen A. Potter; John VanderSchalie; Allison Fischer; Donald P. Knowles; David R. Herndon; Fred R. Rurangirwa; Glen C. Weiser; Subramaniam Srikumaran

ABSTRACT Bronchopneumonia is a population-limiting disease in bighorn sheep in much of western North America. Previous investigators have isolated diverse bacteria from the lungs of affected sheep, but no single bacterial species is consistently present, even within single epizootics. We obtained high-quality diagnostic specimens from nine pneumonic bighorn sheep in three populations and analyzed the bacterial populations present in bronchoalveolar lavage specimens of seven by using a culture-independent method (16S rRNA gene amplification and clone library analyses). Mycoplasma ovipneumoniae was detected as a predominant member of the pneumonic lung flora in lambs with early lesions of bronchopneumonia. Specific PCR tests then revealed the consistent presence of M. ovipneumoniae in the lungs of pneumonic bighorn sheep in this study, and M. ovipneumoniae was isolated from lung specimens of five of the animals. Retrospective application of M. ovipneumoniae PCR to DNA extracted from archived formalin-fixed, paraffin-embedded lung tissues of historical adult bighorn sheep necropsy specimens supported the association of this agent with bronchopneumonia (16/34 pneumonic versus 0/17 nonpneumonic sheep were PCR positive [P < 0.001]). Similarly, a very strong association was observed between the presence of one or more M. ovipneumoniae antibody-positive animals and the occurrence of current or recent historical bronchopneumonia problems (seropositive animals detected in 9/9 versus 0/9 pneumonic and nonpneumonic populations, respectively [P < 0.001]). M. ovipneumoniae is strongly associated with bronchopneumonia in free-ranging bighorn sheep and is a candidate primary etiologic agent for this disease.


Veterinary Microbiology | 2011

Detection of classical and newly described staphylococcal superantigen genes in coagulase-negative staphylococci isolated from bovine intramammary infections

Joo Youn Park; L.K. Fox; Keun Seok Seo; Mark A. McGuire; Yong Ho Park; Fred R. Rurangirwa; William M. Sischo

The coagulase-negative staphylococci (CNS) are the most prevalent mastitis pathogen group yet their virulence characteristics have not been well described. We investigated the presence of 19 classical and newly described staphylococcal superantigen (SAg) genes in CNS isolates from bovine intramammary infections (IMI). A total of 263 CNS representing 11 different Staphylococcus spp. were examined, and 31.2% (n=82) of CNS isolates had one or more SAg genes; there were 21 different SAg gene combinations. The most prevalent combination of SAg genes (seb, seln and selq; n=45) was found in S. chromogenes, S. xylosus, S. haemolyticus, S. sciuri subsp. carnaticus, S. simulans and S. succinus. The genes for SAgs appear to be widely distributed amongst CNS isolated from bovine IMI.


Veterinary Microbiology | 2010

Mycoplasma ovipneumoniae can predispose bighorn sheep to fatal Mannheimia haemolytica pneumonia.

Rohana P. Dassanayake; Sudarvili Shanthalingam; Caroline N. Herndon; Renuka Subramaniam; Paulraj K. Lawrence; Jegarubee Bavananthasivam; E. Frances Cassirer; Gary J. Haldorson; William J. Foreyt; Fred R. Rurangirwa; Donald P. Knowles; Thomas E. Besser; Subramaniam Srikumaran

Mycoplasma ovipneumoniae has been isolated from the lungs of pneumonic bighorn sheep (BHS). However experimental reproduction of fatal pneumonia in BHS with M. ovipneumoniae was not successful. Therefore the specific role, if any, of M. ovipneumoniae in BHS pneumonia is unclear. The objective of this study was to determine whether M. ovipneumoniae alone causes fatal pneumonia in BHS, or predisposes them to infection by Mannheimia haemolytica. We chose M. haemolytica for this study because of its isolation from pneumonic BHS, and its consistent ability to cause fatal pneumonia under experimental conditions. Since in vitro culture could attenuate virulence of M. ovipneumoniae, we used ceftiofur-treated lung homogenates from pneumonic BHS lambs or nasopharyngeal washings from M. ovipneumoniae-positive domestic sheep (DS) as the source of M. ovipneumoniae. Two adult BHS were inoculated intranasally with lung homogenates while two others received nasopharyngeal washings from DS. All BHS developed clinical signs of respiratory infection, but only one BHS died. The dead BHS had carried leukotoxin-positive M. haemolytica in the nasopharynx before the onset of this study. It is likely that M. ovipneumoniae colonization predisposed this BHS to fatal infection with the M. haemolytica already present in this animal. The remaining three BHS developed pneumonia and died 1-5 days following intranasal inoculation with M. haemolytica. On necropsy, lungs of all four BHS showed lesions characteristic of bronchopneumonia. M. haemolytica and M. ovipneumoniae were isolated from the lungs. These results suggest that M. ovipneumoniae alone may not cause fatal pneumonia in BHS, but can predispose them to fatal pneumonia due to M. haemolytica infection.


Veterinary Microbiology | 2011

Comparison of phenotypic and genotypic methods for the species identification of coagulase-negative staphylococcal isolates from bovine intramammary infections

Joo Youn Park; L.K. Fox; Keun Seok Seo; Mark A. McGuire; Yong Ho Park; Fred R. Rurangirwa; William M. Sischo

Coagulase-negative staphylococci (CNS) are the most frequently isolated pathogens from cows with intramammary infection (IMI). Although API STAPH ID 20, a commercially available identification system, and PCR-restriction fragment length polymorphism (PCR-RFLP) of the gap gene (gap PCR-RFLP) have been successfully applied for the identification of CNS isolates from human specimens, their accuracy in the identification of veterinary isolates has not been fully established. In this study, we identified 263 CNS isolates from bovine IMI at species level by partial 16S rRNA gene sequence analysis as the definitive test. Species identification obtained using partial 16S rRNA gene sequence analysis was compared to results from the API STAPH ID 20 and gap PCR-RFLP analysis. Eleven different CNS species were identified by partial 16S rRNA gene sequence analysis. Only 76.0% (200/263) of the species identification results obtained by API STAPH ID 20 matched those obtained by partial 16S rRNA gene sequence analysis, whereas 97.0% (255/263) of the species identification results obtained by the gap PCR-RFLP analysis matched those obtained by partial 16S rRNA gene sequence analysis. The gap PCR-RFLP analysis could be a useful and reliable alternative method for the species identification of CNS isolates from bovine IMI and appears to be a more accurate method of species identification than the API STAPH ID 20 system.


Emerging Infectious Diseases | 2010

Escherichia albertii in wild and domestic birds.

J. Lindsay Oaks; Thomas E. Besser; Seth T. Walk; David M. Gordon; Kimberlee B. Beckmen; Kathy A. Burek; Gary J. Haldorson; Dan S. Bradway; Lindsey Ouellette; Fred R. Rurangirwa; Margaret A. Davis; Greg Dobbin; Thomas S. Whittam

The isolates were similar to those that cause disease in humans.

Collaboration


Dive into the Fred R. Rurangirwa's collaboration.

Top Co-Authors

Avatar

Travis C. McGuire

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Guy H. Palmer

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Terry F. McElwain

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Donald P. Knowles

Washington State University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas P. Jasmer

Washington State University

View shared research outputs
Top Co-Authors

Avatar

J. Lindsay Oaks

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Thomas E. Besser

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Kelly A. Brayton

Washington State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge