Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fred S. Wouters is active.

Publication


Featured researches published by Fred S. Wouters.


Nature Biotechnology | 2001

Imaging FRET between spectrally similar GFP molecules in single cells

Ailsa G. Harpur; Fred S. Wouters; Philippe I. H. Bastiaens

Fluorescence resonance energy transfer (FRET) detection in fusion constructs consisting of green fluorescent protein (GFP) variants linked by a sequence that changes conformation upon modification by enzymes or binding of ligands has enabled detection of physiological processes such as Ca2+ ion release, and protease and kinase activity. Current FRET microscopy techniques are limited to the use of spectrally distinct GFPs such as blue or cyan donors in combination with green or yellow acceptors. The blue or cyan GFPs have the disadvantages of less brightness and of autofluorescence. Here a FRET imaging method is presented that circumvents the need for spectral separation of the GFPs by determination of the fluorescence lifetime of the combined donor/acceptor emission by fluorescence lifetime imaging microscopy (FLIM). This technique gives a sensitive, reproducible, and intrinsically calibrated FRET measurement that can be used with the spectrally similar and bright yellow and green fluorescent proteins (EYFP/EGFP), a pair previously unusable for FRET applications. We demonstrate the benefits of this approach in the analysis of single-cell signaling by monitoring caspase activity in individual cells during apoptosis.


The Journal of Neuroscience | 2008

Flotillin-Dependent Clustering of the Amyloid Precursor Protein Regulates Its Endocytosis and Amyloidogenic Processing in Neurons

Anja Schneider; Lawrence Rajendran; Masanori Honsho; Matthias Gralle; Gerald Donnert; Fred S. Wouters; Stefan W. Hell; Mikael Simons

The flotillins/reggie proteins are associated with noncaveolar membrane microdomains and have been implicated in the regulation of a clathrin- and caveolin-independent endocytosis pathway. Endocytosis is required for the amyloidogenic processing of the amyloid precursor protein (APP) and thus to initiate the release of the neurotoxic β-amyloid peptide (Aβ), the major component of extracellular plaques found in the brains of Alzheimers disease patients. Here, we report that small interference RNA-mediated downregulation of flotillin-2 impairs the endocytosis of APP, in both neuroblastoma cells and primary cultures of hippocampal neurons, and reduces the production of Aβ. Similar to tetanus neurotoxin endocytosis, but unlike the internalization of transferrin, clathrin-dependent endocytosis of APP requires cholesterol and adaptor protein-2 but is independent of epsin1 function. Moreover, on a nanoscale resolution using stimulated emission depletion microscopy and by Förster resonance energy transfer with fluorescence lifetime imaging microscopy, we provide evidence that flotillin-2 promotes the clustering of APP at the cell surface. We show that the interaction of flotillin-2 with APP is dependent on cholesterol and that clustering of APP enhances its endocytosis rate. Together, our data suggest that cholesterol/flotillin-dependent clustering of APP may stimulate the internalization into a specialized clathrin-dependent endocytosis pathway to promote amyloidogenic processing.


Journal of Biological Chemistry | 2009

Neuroprotective Secreted Amyloid Precursor Protein Acts by Disrupting Amyloid Precursor Protein Dimers

Matthias Gralle; Michelle G. Botelho; Fred S. Wouters

The amyloid precursor protein (APP) is implied both in cell growth and differentiation and in neurodegenerative processes in Alzheimer disease. Regulated proteolysis of APP generates biologically active fragments such as the neuroprotective secreted ectodomain sAPPα and the neurotoxic β-amyloid peptide. Furthermore, it has been suggested that the intact transmembrane APP plays a signaling role, which might be important for both normal synaptic plasticity and neuronal dysfunction in dementia. To understand APP signaling, we tracked single molecules of APP using quantum dots and quantitated APP homodimerization using fluorescence lifetime imaging microscopy for the detection of Förster resonance energy transfer in living neuroblastoma cells. Using selective labeling with synthetic fluorophores, we show that the dimerization of APP is considerably higher at the plasma membrane than in intracellular membranes. Heparan sulfate significantly contributes to the almost complete dimerization of APP at the plasma membrane. Importantly, this technique for the first time structurally defines the initiation of APP signaling by binding of a relevant physiological extracellular ligand; our results indicate APP as receptor for neuroprotective sAPPα, as sAPPα binding disrupts APP dimers, and this disruption of APP dimers by sAPPα is necessary for the protection of neuroblastoma cells against starvation-induced cell death. Only cells expressing reversibly dimerized wild-type, but not covalently dimerized mutant APP are protected by sAPPα. These findings suggest a potentially beneficial effect of increasing sAPPα production or disrupting APP dimers for neuronal survival.


Neurobiology of Disease | 2007

α-Synuclein and its disease-related mutants interact differentially with the microtubule protein tau and associate with the actin cytoskeleton

Alessandro Esposito; Christoph P. Dohm; Pawel Kermer; Mathias Bähr; Fred S. Wouters

alpha-Synuclein is a primarily neuronal protein that is enriched at the pre-synapse. alpha-Synuclein and the microtubule binding protein tau have been implicated in neurodegenerative diseases. alpha-Synuclein is known to associate with phospholipid vesicles, regulates dopamine metabolism and exhibits chaperone activity, but its main role remains largely unknown. Furthermore, knowledge on its interactions and post-translational modifications is essential for a molecular understanding of alpha-synucleinopathies. We investigated alpha-synuclein mutations, causative for autosomal dominant forms of Parkinsons disease (A30P, A53T and E46K), and phosphorylation mutants at serine 129 (S129A and S129D) using fluorescently labelled alpha-synuclein, actin and tau. The investigation of colocalization, and protein-protein interactions by Förster resonance energy transfer and fluorescence lifetime imaging showed that alpha-synuclein associates with the actin cytoskeleton and interacts with tau. The A30P mutation and cytoskeletal destabilization decreased this interaction. Given the concurrent loss of membrane binding by this mutation, we propose a membrane-bound functional complex with tau that might involve the actin cytoskeleton.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Synaptic scaffolding protein SYD-2 clusters and activates kinesin-3 UNC-104 in C. elegans

Oliver Wagner; Alessandro Esposito; Barbara Köhler; Chih-Wei Chen; Che-Piao Shen; Gong-Her Wu; Eugenia Butkevich; Sailaja Mandalapu; Dirk Wenzel; Fred S. Wouters; Dieter R. Klopfenstein

Kinesin-3 motor UNC-104/KIF1A is essential for transporting synaptic precursors to synapses. Although the mechanism of cargo binding is well understood, little is known how motor activity is regulated. We mapped functional interaction domains between SYD-2 and UNC-104 by using yeast 2-hybrid and pull-down assays and by using FRET/fluorescence lifetime imaging microscopy to image the binding of SYD-2 to UNC-104 in living Caenorhabditis elegans. We found that UNC-104 forms SYD-2-dependent axonal clusters (appearing during the transition from L2 to L3 larval stages), which behave in FRAP experiments as dynamic aggregates. High-resolution microscopy reveals that these clusters contain UNC-104 and synaptic precursors (synaptobrevin-1). Analysis of motor motility indicates bi-directional movement of UNC-104, whereas in syd-2 mutants, loss of SYD-2 binding reduces net anterograde movement and velocity (similar after deleting UNC-104s liprin-binding domain), switching to retrograde transport characteristics when no role of SYD-2 on dynein and conventional kinesin UNC-116 motility was found. These data present a kinesin scaffolding protein that controls both motor clustering along axons and motor motility, resulting in reduced cargo transport efficiency upon loss of interaction.


International Review of Cytology-a Survey of Cell Biology | 2004

Visualization of molecular activities inside living cells with fluorescent labels

Gertrude Bunt; Fred S. Wouters

The major task of modern cell biology is to identify the function and relation of the many different gene products, discovered by genomics and proteomics approaches, in the context of the living cell. To achieve this goal, an increasing toolbox of custom-designed biosensors based on fluorescent labels is available to study the molecular activities of the cellular machinery. An overview of the current status of the young field of molecular-cellular physiology is presented that includes the application of fluorescent labels in the design of biosensors and the major detection schemes used to extract their sensing information. In particular, the use of the photophysical phenomenon of Förster resonance energy transfer (FRET) as a powerful indicator of cellular biochemical events is discussed. In addition, we will point out the challenges and directions of the field and project the short-term future for the application of fluorescence-based biosensors in biology.


Proceedings of the National Academy of Sciences of the United States of America | 2007

Cholesterol-dependent actin remodeling via RhoA and Rac1 activation by the Streptococcus pneumoniae toxin pneumolysin.

Asparouh I. Iliev; Jasmin Roya Djannatian; Roland Nau; Timothy J. Mitchell; Fred S. Wouters

The Streptococcus pneumoniae toxin pneumolysin belongs to the group of cholesterol-dependent cytolysins. It produces rapid cell lysis at higher concentrations or apoptosis at lower concentrations. In cell membranes, it forms prepores and pores. Here, we show that sublytic concentrations of pneumolysin produce rapid activation of Rho and Rac GTPases and formation of actin stress fibers, filopodia, and lamellipodia. That Rac1-specific and Rho-associated kinase (ROCK)-specific inhibitors reverted the formation of lamellipodia and stress fibers, respectively, identifies RhoA and Rac1 as key toxin effectors. Live imaging excluded macropore formation (as judged by membrane impermeability toward calcein) but indicated very early membrane depolarization [as judged by bis-(1,3-dibutylbarbituric acid)trimethine oxanol staining], indicative of formation of micropores with ion channel properties. That Rac1-dependent lamellipodia formation was reverted by the voltage-gated calcium channel inhibitor SKF96365 and by toxin exposure in calcium-free medium suggests a role for calcium influx via endogenous calcium channels in the Rac1 activation. Cellular cholesterol depletion by methyl-β-cyclodextrin or incubation of the toxin with cholesterol before cell treatment eliminated its membrane binding and the subsequent GTPase activation. Thus, that our experiments show small GTPase activation by a cholesterol-dependent cytolysin suggests a membrane cholesterol-dependent activation mechanism.


Journal of The Optical Society of America A-optics Image Science and Vision | 2007

Optimizing frequency-domain fluorescence lifetime sensing for high-throughput applications: photon economy and acquisition speed.

Alessandro Esposito; Hans C. Gerritsen; Fred S. Wouters

The signal-to-noise ratio of a measurement is determined by the photon economy of the detection technique and the available photons that are emitted by the sample. We investigate the efficiency of various frequency-domain lifetime detection techniques also in relation to time-domain detection. Nonlinear effects are discussed that are introduced by the use of image intensifiers and by fluorophore saturation. The efficiency of fluorescence lifetime imaging microscopy setups is connected to the speed of acquisition and thus to the imaging throughput. We report on the optimal conditions for balancing signal-to-noise ratio and acquisition speed in fluorescence lifetime sensing.


The Journal of Neuroscience | 2008

Fibroblast Growth Factor-Regulated Palmitoylation of the Neural Cell Adhesion Molecule Determines Neuronal Morphogenesis

Evgeni Ponimaskin; Galina Dityateva; Mika O. Ruonala; Masaki Fukata; Yuko Fukata; Fritz Kobe; Fred S. Wouters; Markus Delling; David S. Bredt; Melitta Schachner; Alexander Dityatev

During development of the nervous system, short- and long-range signals cooperate to promote axonal growth, guidance, and target innervation. Particularly, a short-range signal transducer, the neural cell adhesion molecule (NCAM), stimulates neurite outgrowth via mechanisms that require posttranslational modification of NCAM and signaling via receptors to a long-range messenger, the fibroblast growth factor (FGF). In the present study we further characterized a mechanism which regulates the functional interplay between NCAM and FGF receptor(s). We show that activation of FGF receptor(s) by FGF2 leads to palmitoylation of the two major transmembrane NCAM isoforms, NCAM140 and NCAM180, translocation of NCAM to GM1 ganglioside-containing lipid rafts, and stimulation of neurite outgrowth of hippocampal neurons. Ablation of NCAM, mutation of NCAM140 or NCAM180 palmitoylation sites, or pharmacological suppression of NCAM signaling inhibited FGF2-stimulated neurite outgrowth. Of the 23 members of the aspartate-histidine-histidine-cysteine (DHHC) domain containing proteins, DHHC-7 most strongly stimulated palmitoylation of NCAM, and enzyme activity was enhanced by FGF2. Thus, our study uncovers a molecular mechanism by which a growth factor regulates neuronal morphogenesis via activation of palmitoylation, which in turn modifies subcellular location and thus signaling via an adhesion molecule.


Biochemistry | 2008

pHlameleons: A Family of FRET-Based Protein Sensors for Quantitative pH Imaging†

Alessandro Esposito; Matthias Gralle; Maria Angela C. Dani; Dirk Lange; Fred S. Wouters

Intracellular pH is an important indicator for cellular metabolism and pathogenesis. pH sensing in living cells has been achieved using a number of synthetic organic dyes and genetically expressible sensor proteins, even allowing the specific targeting of intracellular organelles. Ideally, a class of genetically encodeable sensors need to cover relevant cellular pH ranges. We present a FRET-based pH sensor platform, based on the pH modulation of YFP acceptor fluorophores in a fusion construct with ECFP. The concurrent loss of the overlap integral upon acidification results in a proportionally reduced FRET coupling. The readout of FRET over the sensitized YFP fluorescence lifetime yields a highly sensitive and robust pH measurement that is self-calibrated. The principle is demonstrated in the existing high-efficiency FRET fusion Cy11.5, and tunability of the platform design is demonstrated by genetic alteration of the pH sensitivity of the acceptor moiety.

Collaboration


Dive into the Fred S. Wouters's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mathias Bähr

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pawel Kermer

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar

Gertrude Bunt

University of Göttingen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sundar Ganesan

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge