Fred Schaufele
University of California, San Francisco
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fred Schaufele.
Molecular and Cellular Biology | 2004
Sarah E. Ross; Hanna S. Radomska; Bo Wu; Pu Zhang; Jonathon N. Winnay; Laszlo Bajnok; Wendy S. Wright; Fred Schaufele; Daniel G. Tenen; Ormond A. MacDougald
ABSTRACT CCAAT/enhancer-binding protein α (C/EBPα) is one of the key transcription factors that mediate lineage specification and differentiation of multipotent myeloid progenitors into mature granulocytes. Although C/EBPα is known to induce granulopoiesis while suppressing monocyte differentiation, it is unclear how C/EBPα regulates this cell fate choice at the mechanistic level. Here we report that inducers of monocyte differentiation inhibit the alternate cell fate choice, that of granulopoiesis, through inhibition of C/EBPα. This inhibition is mediated by extracellular signal-regulated kinases 1 and/or 2 (ERK1/2), which interact with C/EBPα through an FXFP docking site and phosphorylate serine 21. As a consequence of C/EBPα phosphorylation, induction of granulocyte differentiation by C/EBPα or retinoic acid is inhibited. Our analysis of C/EBPα by fluorescent resonance energy transfer revealed that phosphorylation induces conformational changes in C/EBPα, increasing the distance between the amino termini of C/EBPα dimers. Thus, myeloid development is partly regulated by an ERK1/2-mediated change in the conformation of C/EBPα that favors monocyte differentiation by blocking granulopoiesis.
Molecular and Cellular Biology | 1993
Gabriela N. Lopez; Fred Schaufele; Paul Webb; Jeffrey M. Holloway; John D. Baxter; Peter J. Kushner
We have characterized the putative AP1 site in the backbone of pUC plasmids and found unique regulatory effects. The site, which mapped to a 19-bp region around nucleotide 37, conferred transcriptional activation by Jun or Jun/Fos that was boosted up to fivefold by unliganded thyroid hormone receptor (TR). Thyroid hormone changed potentiation of the Jun response by TR into repression. Although the plasmid sequence is a near-perfect consensus AP1 site, the perfect consensus AP1 site from the human collagenase promoter did not show the same effects. Deletion of the ligand binding domain of the TR eliminated the ability of the receptor to boost Jun activity, and deletion, mutation, or changes in specificity of the DNA binding domain eliminated both its ability to potentiate Jun activity and repress with hormone. In vitro Jun/Fos complexes bound the operative plasmid fragment, and the presence of TR interfered very little with Jun/Fos binding activity. Protein interaction studies in the absence of DNA showed that TR bound Jun protein in solution either in the presence or in the absence of hormone. These observations suggest a mechanism for synergy and repression by TR through modulation of Jun activity: positive when TR is unliganded, and negative when hormone is bound. They also suggest that the presence of the plasmid element can confound studies of the regulation of linked promoters.
PLOS ONE | 2009
Sreenivasan Paruthiyil; Aleksandra Cvoro; Xiaoyue Zhao; Zhijin Wu; Yunxia Sui; Richard E. Staub; Scott Baggett; Candice B. Herber; Chandi Griffin; Mary Tagliaferri; Heather A. Harris; Isaac Cohen; Leonard F. Bjeldanes; Terence P. Speed; Fred Schaufele; Dale C. Leitman
Estrogens produce biological effects by interacting with two estrogen receptors, ERα and ERβ. Drugs that selectively target ERα or ERβ might be safer for conditions that have been traditionally treated with non-selective estrogens. Several synthetic and natural ERβ-selective compounds have been identified. One class of ERβ-selective agonists is represented by ERB-041 (WAY-202041) which binds to ERβ much greater than ERα. A second class of ERβ-selective agonists derived from plants include MF101, nyasol and liquiritigenin that bind similarly to both ERs, but only activate transcription with ERβ. Diarylpropionitrile represents a third class of ERβ-selective compounds because its selectivity is due to a combination of greater binding to ERβ and transcriptional activity. However, it is unclear if these three classes of ERβ-selective compounds produce similar biological activities. The goals of these studies were to determine the relative ERβ selectivity and pattern of gene expression of these three classes of ERβ-selective compounds compared to estradiol (E2), which is a non-selective ER agonist. U2OS cells stably transfected with ERα or ERβ were treated with E2 or the ERβ-selective compounds for 6 h. Microarray data demonstrated that ERB-041, MF101 and liquiritigenin were the most ERβ-selective agonists compared to estradiol, followed by nyasol and then diarylpropionitrile. FRET analysis showed that all compounds induced a similar conformation of ERβ, which is consistent with the finding that most genes regulated by the ERβ-selective compounds were similar to each other and E2. However, there were some classes of genes differentially regulated by the ERβ agonists and E2. Two ERβ-selective compounds, MF101 and liquiritigenin had cell type-specific effects as they regulated different genes in HeLa, Caco-2 and Ishikawa cell lines expressing ERβ. Our gene profiling studies demonstrate that while most of the genes were commonly regulated by ERβ-selective agonists and E2, there were some genes regulated that were distinct from each other and E2, suggesting that different ERβ-selective agonists might produce distinct biological and clinical effects.
Journal of Biomedical Optics | 2008
Richard N. Day; Fred Schaufele
We have witnessed remarkable advances over the past decade in the application of optical techniques to visualize the genetically encoded fluorescent proteins (FPs) in living systems. The imaging of the FPs inside living cells has become an essential tool for studies of cell biology and physiology. FPs are now available that span the visible spectrum from deep blue to deep red, providing a wide choice of genetically encoded fluorescent markers. Furthermore, some FPs have been identified that have unusual characteristics that make them useful reporters of the dynamic behaviors of proteins inside cells. These additions to the FP toolbox are now being used for some very innovative live-cell imaging applications. Here, we will highlight the characteristics and uses of a few of these exceptional probes. Many different optical methods can be combined with the FPs from marine organisms to provide quantitative measurements in living systems.
Journal of Cell Science | 2008
Jamil Kanaani; George H. Patterson; Fred Schaufele; Jennifer Lippincott-Schwartz; Steinunn Baekkeskov
GAD65, the smaller isoform of the enzyme glutamic acid decarboxylase, synthesizes GABA for fine-tuning of inhibitory neurotransmission. GAD65 is synthesized as a soluble hydrophilic protein but undergoes a hydrophobic post-translational modification and becomes anchored to the cytosolic face of Golgi membranes. A second hydrophobic modification, palmitoylation of Cys30 and Cys45 in GAD65, is not required for the initial membrane anchoring but is crucial for post-Golgi trafficking of the protein to presynaptic clusters. The mechanism by which palmitoylation directs targeting of GAD65 through and out of the Golgi complex is unknown. Here, we show that prior to palmitoylation, GAD65 anchors to both ER and Golgi membranes. Palmitoylation, however, clears GAD65 from the ER-Golgi, targets it to the trans-Golgi network and then to a post-Golgi vesicular pathway. FRAP analyses of trafficking of GAD65-GFP reveal a rapid and a slow pool of protein replenishing the Golgi complex. The rapid pool represents non-palmitoylated hydrophobic GAD65-GFP, which exchanges rapidly between the cytosol and ER/Golgi membranes. The slow pool represents palmitoylation-competent GAD65-GFP, which replenishes the Golgi complex via a non-vesicular pathway and at a rate consistent with a depalmitoylation step. We propose that a depalmitoylation-repalmitoylation cycle serves to cycle GAD65 between Golgi and post-Golgi membranes and dynamically control levels of enzyme directed to the synapse.
Journal of Biological Chemistry | 2007
Xiaowei Liu; Bo Wu; Jaroslaw Szary; Eric M. Kofoed; Fred Schaufele
Higher eukaryote genomes contain repetitive DNAs, often concentrated in transcriptionally inactive heterochromatin. Although repetitive DNAs are not typically considered as regulatory elements that directly affect transcription, they can contain binding sites for some transcription factors. Here, we demonstrate that binding of the transcription factor CCAAT/enhancer-binding protein α (C/EBPα) to the mouse major α-satellite repetitive DNA sequesters C/EBPα in the transcriptionally inert pericentromeric heterochromatin. We find that this sequestration reduces the transcriptional capacity of C/EBPα. Functional sequestration of C/EBPα was demonstrated by experimentally reducing C/EBPα binding to the major α-satellite DNA, which elevated the concentration of C/EBPα in the non-heterochromatic subcompartment of the cell nucleus. The reduction in C/EBPα binding to α-satellite DNA was induced by the co-expression of the transcription factor Pit-1, which removes C/EBPα from the heterochromatic compartment, and by the introduction of an altered-specificity mutation into C/EBPα that reduces binding to α-satellite DNA but permits normal binding to sites in some gene promoters. In both cases the loss of α-satellite DNA binding coincided with an elevation in the binding of C/EBPα to a promoter and an increased transcriptional output from that promoter. Thus, the binding of C/EBPα to this highly repetitive DNA reduced the amount of C/EBPα available for binding to and regulation of this promoter. The functional sequestration of some transcription factors through binding to repetitive DNAs may represent an underappreciated mechanism controlling transcription output.
Journal of Biological Chemistry | 1996
Winston Chang; Wen Zhou; Lars Eyde Theill; John D. Baxter; Fred Schaufele
Synergistic transcription activation is a key component in the generation of the spectrum of eukaryotic promoter activities by a limited number of transcription factors. Various mechanisms could account for synergy, but a central question remains of whether synergism requires transcription factor functions that differ from those that direct independent activation. The rat growth hormone promoter is synergistically activated by the pituitary-specific transcription factor, Pit-1, and the thyroid hormone receptor (TR). Mutations that disrupted the previously described DNA binding and transcriptional activation domains of both Pit-1 and TR reduced Pit-1/TR synergy in parallel with their effects on the much weaker, independent Pit-1 and TR activations of the rat growth hormone promoter. Thus, Pit-1 and TR amplify each others intrinsic activities. Mutations of Pit-1 that selectively inhibited synergism with the TR without affecting independent Pit-1 activity were also identified. Pit-1/TR synergy is therefore a consequence of a novel synergism-selective activity and synergism-independent Pit-1 and TR functions.
Journal of Biological Chemistry | 1996
Kathryn N. Farrow; Nicole Manning; Fred Schaufele; Arthur Gutierrez-Hartmann
The transcription and transformation activity of c-Jun is governed by a 27-amino acid regulatory motif, labeled the δ-domain, which is deleted in v-Jun. We have previously shown that c-Jun is a potent inhibitor of the rat prolactin (rPRL) promoter activity induced by either oncogenic Ras or phorbol esters. Here, we have characterized the structural and cell-specific requirements for this c-Jun inhibitory response, and we show that this c-Jun inhibitory response mapped to the rPRL footprint II repressor site, was pituitary-specific and required the c-Jun δ-domain. Moreover, alteration of any one of these features (e.g., cis-element, trans-factor, or cell-specific background) switched c-Jun to a transcriptional activator of the rPRL promoter. In HeLa nonpituitary cells, c-Jun alone activated the rPRL promoter via the most proximal GHF-1/Pit-1 binding site, footprint I, and synergized with GHF-1. Finally, recombinant GHF-1 interacted directly with c-Jun but not c-Fos proteins. These data provide important fundamental insights into the molecular mechanisms by which the c-Jun δ-domain functions as a modulatory switch and further imply that the functional role of c-Jun is dictated by cell-specific influences and the δ-domain motif.
BMC Cell Biology | 2002
Weiqun Liu; John F Enwright; William Hyun; Richard N. Day; Fred Schaufele
BackgroundA number of transcription factors coordinate differentiation by simultaneously regulating gene expression and cell proliferation. CCAAT/enhancer binding protein alpha (C/EBPα) is a basic/leucine zipper transcription factor that integrates transcription with proliferation to regulate the differentiation of tissues involved in energy balance. In the pituitary, C/EBPα regulates the transcription of a key metabolic regulator, growth hormone.ResultsWe examined the consequences of C/EBPα expression on proliferation of the transformed, mouse GHFT1-5 pituitary progenitor cell line. In contrast to mature pituitary cells, GHFT1-5 cells do not contain C/EBPα. Ectopic expression of C/EBPα in the progenitor cells resulted in prolongation of both growth 1 (G1) and the DNA synthesis (S) phases of the cell cycle. Transcription activation domain 1 and 2 of C/EBPα were required for prolongation of G1, but not of S. Some transcriptionally inactive derivatives of C/EBPα remained competent for G1 and S phase prolongation. C/EBPα deleted of its leucine zipper dimerization functions was as effective as full-length C/EBPα in prolonging G1 and S.ConclusionWe found that C/EBPα utilizes mechanistically distinct activities to prolong the cell cycle in G1 and S in pituitary progenitor cells. G1 and S phase prolongation did not require that C/EBPα remained transcriptionally active or retained the ability to dimerize via the leucine zipper. G1, but not S, arrest required a domain overlapping with C/EBPα transcription activation functions 1 and 2. Separation of mechanisms governing proliferation and transcription permits C/EBPα to regulate gene expression independently of its effects on proliferation.
PLOS ONE | 2014
Karyn J. Catalano; Betty A. Maddux; Jaroslaw Szary; Jack F. Youngren; Ira D. Goldfine; Fred Schaufele
Insulin resistance, the diminished response of target tissues to insulin, is associated with the metabolic syndrome and a predisposition towards diabetes in a growing proportion of the worldwide population. Under insulin resistant states, the cellular response of the insulin signaling pathway is diminished and the body typically responds by increasing serum insulin concentrations to maintain insulin signaling. Some evidence indicates that the increased insulin concentration may itself further dampen insulin response. If so, insulin resistance would worsen as the level of circulating insulin increases during compensation, which could contribute to the transition of insulin resistance to more severe disease. Here, we investigated the consequences of excess insulin exposure to insulin receptor (IR) activity. Cells chronically exposed to insulin show a diminished the level of IR tyrosine and serine autophosphorylation below that observed after short-term insulin exposure. The diminished IR response did not originate with IR internalization since IR amounts at the cell membrane were similar after short- and long-term insulin incubation. Förster resonance energy transfer between fluorophores attached to the IR tyrosine kinase (TK) domain showed that a change in the TK domain occurred upon prolonged, but not short-term, insulin exposure. Even though the altered ‘insulin refractory’ IR TK FRET and IR autophosphorylation levels returned to baseline (non-stimulated) levels after wash-out of the original insulin stimulus, subsequent short-term exposure to insulin caused immediate re-establishment of the insulin-refractory levels. This suggests that some cell-based ‘memory’ of chronic hyperinsulinemic exposure acts directly at the IR. An improved understanding of that memory may help define interventions to reset the IR to full insulin responsiveness and impede the progression of insulin resistance to more severe disease states.