Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Brian L. West is active.

Publication


Featured researches published by Brian L. West.


Nature | 2010

Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF -mutant melanoma

Gideon Bollag; Peter Hirth; James H. Tsai; Jiazhong Zhang; Prabha N. Ibrahim; Hanna Cho; Wayne Spevak; Chao Zhang; Ying Zhang; Gaston Habets; Elizabeth A. Burton; Bernice Wong; Garson Tsang; Brian L. West; Ben Powell; Rafe Shellooe; Adhirai Marimuthu; Hoa Nguyen; Kam Y. J. Zhang; Dean R. Artis; Joseph Schlessinger; Fei Su; Brian Higgins; Raman Mahadevan Iyer; Kurt D'Andrea; Astrid Koehler; Michael Stumm; Paul S. Lin; Richard J. Lee; Joseph F. Grippo

B-RAF is the most frequently mutated protein kinase in human cancers. The finding that oncogenic mutations in BRAF are common in melanoma, followed by the demonstration that these tumours are dependent on the RAF/MEK/ERK pathway, offered hope that inhibition of B-RAF kinase activity could benefit melanoma patients. Herein, we describe the structure-guided discovery of PLX4032 (RG7204), a potent inhibitor of oncogenic B-RAF kinase activity. Preclinical experiments demonstrated that PLX4032 selectively blocked the RAF/MEK/ERK pathway in BRAF mutant cells and caused regression of BRAF mutant xenografts. Toxicology studies confirmed a wide safety margin consistent with the high degree of selectivity, enabling Phase 1 clinical trials using a crystalline formulation of PLX4032 (ref. 5). In a subset of melanoma patients, pathway inhibition was monitored in paired biopsy specimens collected before treatment initiation and following two weeks of treatment. This analysis revealed substantial inhibition of ERK phosphorylation, yet clinical evaluation did not show tumour regressions. At higher drug exposures afforded by a new amorphous drug formulation, greater than 80% inhibition of ERK phosphorylation in the tumours of patients correlated with clinical response. Indeed, the Phase 1 clinical data revealed a remarkably high 81% response rate in metastatic melanoma patients treated at an oral dose of 960 mg twice daily. These data demonstrate that BRAF-mutant melanomas are highly dependent on B-RAF kinase activity.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Discovery of a selective inhibitor of oncogenic B-Raf kinase with potent antimelanoma activity.

James H. Tsai; John T. Lee; Weiru Wang; Jiazhong Zhang; Hanna Cho; Shumeye Mamo; Ryan Bremer; Sam Gillette; Jun Kong; Nikolas K. Haass; Katrin Sproesser; Ling Li; Keiran S.M. Smalley; Daniel Fong; Yong-Liang Zhu; Adhirai Marimuthu; Hoa Nguyen; Billy Lam; Jennifer Liu; Ivana Cheung; Julie Rice; Yoshihisa Suzuki; Catherine Luu; Calvin Settachatgul; Rafe Shellooe; John Cantwell; Sung-Hou Kim; Joseph Schlessinger; Kam Y. J. Zhang; Brian L. West

BRAFV600E is the most frequent oncogenic protein kinase mutation known. Furthermore, inhibitors targeting “active” protein kinases have demonstrated significant utility in the therapeutic repertoire against cancer. Therefore, we pursued the development of specific kinase inhibitors targeting B-Raf, and the V600E allele in particular. By using a structure-guided discovery approach, a potent and selective inhibitor of active B-Raf has been discovered. PLX4720, a 7-azaindole derivative that inhibits B-RafV600E with an IC50 of 13 nM, defines a class of kinase inhibitor with marked selectivity in both biochemical and cellular assays. PLX4720 preferentially inhibits the active B-RafV600E kinase compared with a broad spectrum of other kinases, and potent cytotoxic effects are also exclusive to cells bearing the V600E allele. Consistent with the high degree of selectivity, ERK phosphorylation is potently inhibited by PLX4720 in B-RafV600E-bearing tumor cell lines but not in cells lacking oncogenic B-Raf. In melanoma models, PLX4720 induces cell cycle arrest and apoptosis exclusively in B-RafV600E-positive cells. In B-RafV600E-dependent tumor xenograft models, orally dosed PLX4720 causes significant tumor growth delays, including tumor regressions, without evidence of toxicity. The work described here represents the entire discovery process, from initial identification through structural and biological studies in animal models to a promising therapeutic for testing in cancer patients bearing B-RafV600E-driven tumors.


Cancer Discovery | 2011

Leukocyte Complexity Predicts Breast Cancer Survival and Functionally Regulates Response to Chemotherapy

David G. DeNardo; Donal J. Brennan; Elton Rexhepaj; Brian Ruffell; Stephen L. Shiao; Stephen F. Madden; William M. Gallagher; Nikhil Wadhwani; Scott D. Keil; Sharfaa A. Junaid; Hope S. Rugo; E. Shelley Hwang; Karin Jirström; Brian L. West; Lisa M. Coussens

UNLABELLED Immune-regulated pathways influence multiple aspects of cancer development. In this article we demonstrate that both macrophage abundance and T-cell abundance in breast cancer represent prognostic indicators for recurrence-free and overall survival. We provide evidence that response to chemotherapy is in part regulated by these leukocytes; cytotoxic therapies induce mammary epithelial cells to produce monocyte/macrophage recruitment factors, including colony stimulating factor 1 (CSF1) and interleukin-34, which together enhance CSF1 receptor (CSF1R)-dependent macrophage infiltration. Blockade of macrophage recruitment with CSF1R-signaling antagonists, in combination with paclitaxel, improved survival of mammary tumor-bearing mice by slowing primary tumor development and reducing pulmonary metastasis. These improved aspects of mammary carcinogenesis were accompanied by decreased vessel density and appearance of antitumor immune programs fostering tumor suppression in a CD8+ T-cell-dependent manner. These data provide a rationale for targeting macrophage recruitment/response pathways, notably CSF1R, in combination with cytotoxic therapy, and identification of a breast cancer population likely to benefit from this novel therapeutic approach. SIGNIFICANCE These findings reveal that response to chemotherapy is in part regulated by the tumor immune microenvironment and that common cytotoxic drugs induce neoplastic cells to produce monocyte/macrophage recruitment factors, which in turn enhance macrophage infiltration into mammary adenocarcinomas. Blockade of pathways mediating macrophage recruitment, in combination with chemotherapy, significantly decreases primary tumor progression, reduces metastasis, and improves survival by CD8+ T-cell-dependent mechanisms, thus indicating that the immune microenvironment of tumors can be reprogrammed to instead foster antitumor immunity and improve response to cytotoxic therapy.


Nature Genetics | 2006

Germline KRAS mutations cause Noonan syndrome

Suzanne Schubbert; Martin Zenker; Sara L. Rowe; Silke Böll; Cornelia Klein; Gideon Bollag; Ineke van der Burgt; Luciana Musante; Vera M. Kalscheuer; Lars-Erik Wehner; Hoa Nguyen; Brian L. West; Kam Y. J. Zhang; Erik A. Sistermans; Anita Rauch; Charlotte M. Niemeyer; Kevin Shannon; Christian P. Kratz

Noonan syndrome (MIM 163950) is characterized by short stature, facial dysmorphism and cardiac defects. Heterozygous mutations in PTPN11, which encodes SHP-2, cause ∼50% of cases of Noonan syndrome. The SHP-2 phosphatase relays signals from activated receptor complexes to downstream effectors, including Ras. We discovered de novo germline KRAS mutations that introduce V14I, T58I or D153V amino acid substitutions in five individuals with Noonan syndrome and a P34R alteration in a individual with cardio-facio-cutaneous syndrome (MIM 115150), which has overlapping features with Noonan syndrome. Recombinant V14I and T58I K-Ras proteins show defective intrinsic GTP hydrolysis and impaired responsiveness to GTPase activating proteins, render primary hematopoietic progenitors hypersensitive to growth factors and deregulate signal transduction in a cell lineage–specific manner. These studies establish germline KRAS mutations as a cause of human disease and infer that the constellation of developmental abnormalities seen in Noonan syndrome spectrum is, in large part, due to hyperactive Ras.


Cancer Research | 2013

Targeting Tumor-Infiltrating Macrophages Decreases Tumor-Initiating Cells, Relieves Immunosuppression, and Improves Chemotherapeutic Responses

Jonathan B. Mitchem; Donal J. Brennan; Brett L. Knolhoff; Brian Belt; Yu Zhu; Dominic E. Sanford; Larisa Belaygorod; Danielle Carpenter; Lynne Collins; David Piwnica-Worms; Stephen M. Hewitt; Girish Mallya Udupi; William M. Gallagher; Craig D. Wegner; Brian L. West; Andrea Wang-Gillam; Peter S. Goedegebuure; David C. Linehan; David G. DeNardo

Tumor-infiltrating immune cells can promote chemoresistance and metastatic spread in aggressive tumors. Consequently, the type and quality of immune responses present in the neoplastic stroma are highly predictive of patient outcome in several cancer types. In addition to host immune responses, intrinsic tumor cell activities that mimic stem cell properties have been linked to chemoresistance, metastatic dissemination, and the induction of immune suppression. Cancer stem cells are far from a static cell population; rather, their presence seems to be controlled by highly dynamic processes that are dependent on cues from the tumor stroma. However, the impact immune responses have on tumor stem cell differentiation or expansion is not well understood. In this study, we show that targeting tumor-infiltrating macrophages (TAM) and inflammatory monocytes by inhibiting either the myeloid cell receptors colony-stimulating factor-1 receptor (CSF1R) or chemokine (C-C motif) receptor 2 (CCR2) decreases the number of tumor-initiating cells (TIC) in pancreatic tumors. Targeting CCR2 or CSF1R improves chemotherapeutic efficacy, inhibits metastasis, and increases antitumor T-cell responses. Tumor-educated macrophages also directly enhanced the tumor-initiating capacity of pancreatic tumor cells by activating the transcription factor STAT3, thereby facilitating macrophage-mediated suppression of CD8(+) T lymphocytes. Together, our findings show how targeting TAMs can effectively overcome therapeutic resistance mediated by TICs.


Cancer Research | 2014

CSF1/CSF1R Blockade Reprograms Tumor-Infiltrating Macrophages and Improves Response to T Cell Checkpoint Immunotherapy in Pancreatic Cancer Models.

Yu Zhu; Brett L. Knolhoff; Melissa A Meyer; Timothy M. Nywening; Brian L. West; Jianyang Luo; Andrea Wang-Gillam; Simon Peter Goedegebuure; David C. Linehan; David G. DeNardo

Cancer immunotherapy generally offers limited clinical benefit without coordinated strategies to mitigate the immunosuppressive nature of the tumor microenvironment. Critical drivers of immune escape in the tumor microenvironment include tumor-associated macrophages and myeloid-derived suppressor cells, which not only mediate immune suppression, but also promote metastatic dissemination and impart resistance to cytotoxic therapies. Thus, strategies to ablate the effects of these myeloid cell populations may offer great therapeutic potential. In this report, we demonstrate in a mouse model of pancreatic ductal adenocarcinoma (PDAC) that inhibiting signaling by the myeloid growth factor receptor CSF1R can functionally reprogram macrophage responses that enhance antigen presentation and productive antitumor T-cell responses. Investigations of this response revealed that CSF1R blockade also upregulated T-cell checkpoint molecules, including PDL1 and CTLA4, thereby restraining beneficial therapeutic effects. We found that PD1 and CTLA4 antagonists showed limited efficacy as single agents to restrain PDAC growth, but that combining these agents with CSF1R blockade potently elicited tumor regressions, even in larger established tumors. Taken together, our findings provide a rationale to reprogram immunosuppressive myeloid cell populations in the tumor microenvironment under conditions that can significantly empower the therapeutic effects of checkpoint-based immunotherapeutics.


Nature Genetics | 2014

Mutation of NLRC4 causes a syndrome of enterocolitis and autoinflammation

Neil Romberg; Khatoun Al Moussawi; Carol Nelson-Williams; Amy L. Stiegler; Erin Loring; Murim Choi; John D. Overton; Eric Meffre; Mustafa K. Khokha; Anita J Huttner; Brian L. West; Nikolai A. Podoltsev; Titus J. Boggon; Barbara I. Kazmierczak; Richard P. Lifton

Upon detection of pathogen-associated molecular patterns, innate immune receptors initiate inflammatory responses. These receptors include cytoplasmic NOD-like receptors (NLRs) whose stimulation recruits and proteolytically activates caspase-1 within the inflammasome, a multiprotein complex. Caspase-1 mediates the production of interleukin-1 family cytokines (IL1FCs), leading to fever and inflammatory cell death (pyroptosis). Mutations that constitutively activate these pathways underlie several autoinflammatory diseases with diverse clinical features. We describe a family with a previously unreported syndrome featuring neonatal-onset enterocolitis, periodic fever, and fatal or near-fatal episodes of autoinflammation. We show that the disease is caused by a de novo gain-of-function mutation in NLRC4 encoding a p.Val341Ala substitution in the HD1 domain of the protein that cosegregates with disease. Mutant NLRC4 causes constitutive IL1FC production and macrophage cell death. Infected macrophages from affected individuals are polarized toward pyroptosis and exhibit abnormal staining for inflammasome components. These findings identify and describe the cause of a life-threatening but treatable autoinflammatory disease that underscores the divergent roles of the NLRC4 inflammasome.


Cancer Research | 2013

CSF1R Signaling Blockade Stanches Tumor-Infiltrating Myeloid Cells and Improves the Efficacy of Radiotherapy in Prostate Cancer

Jingying Xu; Jemima Escamilla; Stephen Mok; John R. David; Saul J. Priceman; Brian L. West; Gideon Bollag; William H. McBride; Lily Wu

Radiotherapy is a major frontline treatment for prostate cancer patients, yet, a large portion of these patients suffer from local tumor recurrence. Tumor-infiltrating myeloid cells (TIMs), including CD11b+F4/80+ tumor-associated macrophages (TAMs) and CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs), play critical roles in promoting tumor angiogenesis, tissue remodeling and immunosuppression. Here, we show enhanced recruitment of TAMs and MDSCs after local irradiation. Although treatment is directed to the tumor sites, the impact of irradiation is systemic as dramatic increases of MDSCs were observed in the spleen, lung, lymph nodes and peripheral blood. Of the cytokines examined, we found that macrophage colony-stimulating factor 1 (CSF1) increased by 2 fold in irradiated tumors. Enhanced macrophage migration induced by conditioned media from irradiated tumor cells was completely blocked by the selective CSF1R inhibitor, GW2580. Importantly, increased CSF1 levels were also observed in the serum of prostate cancer patients after radiotherapy. ABL1 (c-Abl), a non-receptor tyrosine kinase, known to mediate apoptosis and signal transduction under stress, is activated by irradiation. Activated ABL1 translocates to the nucleus, binds to the CSF1 promoter region and enhances CSF1 transcription. Combination therapy using a CSF1R inhibitor currently in clinical trials, PLX3397, with radiation suppressed tumor growth more effectively than radiation alone. This study highlights the importance of CSF1/CSF1R signaling in the recruitment of TIMs in response to radiotherapy and suggests their significant role in promoting tumor recurrence. Furthermore, our data supports co-targeting TIMs in conjunction with radiotherapy to achieve a more effective and durable treatment strategy for prostate cancer patients.Radiotherapy is used to treat many types of cancer, but many treated patients relapse with local tumor recurrence. Tumor-infiltrating myeloid cells (TIM), including CD11b (ITGAM)(+)F4/80 (EMR1)+ tumor-associated macrophages (TAM), and CD11b(+)Gr-1 (LY6G)+ myeloid-derived suppressor cells (MDSC), respond to cancer-related stresses and play critical roles in promoting tumor angiogenesis, tissue remodeling, and immunosuppression. In this report, we used a prostate cancer model to investigate the effects of irradiation on TAMs and MDSCs in tumor-bearing animals. Unexpectedly, when primary tumor sites were irradiated, we observed a systemic increase of MDSCs in spleen, lung, lymph nodes, and peripheral blood. Cytokine analysis showed that the macrophage colony-stimulating factor CSF1 increased by two-fold in irradiated tumors. Enhanced macrophage migration induced by conditioned media from irradiated tumor cells was completely blocked by a selective inhibitor of CSF1R. These findings were confirmed in patients with prostate cancer, where serum levels of CSF1 increased after radiotherapy. Mechanistic investigations revealed the recruitment of the DNA damage-induced kinase ABL1 into cell nuclei where it bound the CSF1 gene promoter and enhanced CSF1 gene transcription. When added to radiotherapy, a selective inhibitor of CSF1R suppressed tumor growth more effectively than irradiation alone. Our results highlight the importance of CSF1/CSF1R signaling in the recruitment of TIMs that can limit the efficacy of radiotherapy. Furthermore, they suggest that CSF1 inhibitors should be evaluated in clinical trials in combination with radiotherapy as a strategy to improve outcomes.


Journal of Clinical Investigation | 2011

Small-molecule MAPK inhibitors restore radioiodine incorporation in mouse thyroid cancers with conditional BRAF activation

Debyani Chakravarty; Elmer Santos; Mabel Ryder; Jeffrey A. Knauf; Xiao Hui Liao; Brian L. West; Gideon Bollag; Richard Kolesnick; Tin Htwe Thin; Neal Rosen; Pat Zanzonico; Steven M. Larson; Samuel Refetoff; Ronald Ghossein; James A. Fagin

Advanced human thyroid cancers, particularly those that are refractory to treatment with radioiodine (RAI), have a high prevalence of BRAF (v-raf murine sarcoma viral oncogene homolog B1) mutations. However, the degree to which these cancers are dependent on BRAF expression is still unclear. To address this question, we generated mice expressing one of the most commonly detected BRAF mutations in human papillary thyroid carcinomas (BRAF(V600E)) in thyroid follicular cells in a doxycycline-inducible (dox-inducible) manner. Upon dox induction of BRAF(V600E), the mice developed highly penetrant and poorly differentiated thyroid tumors. Discontinuation of dox extinguished BRAF(V600E) expression and reestablished thyroid follicular architecture and normal thyroid histology. Switching on BRAF(V600E) rapidly induced hypothyroidism and virtually abolished thyroid-specific gene expression and RAI incorporation, all of which were restored to near basal levels upon discontinuation of dox. Treatment of mice with these cancers with small molecule inhibitors of either MEK or mutant BRAF reduced their proliferative index and partially restored thyroid-specific gene expression. Strikingly, treatment with the MAPK pathway inhibitors rendered the tumor cells susceptible to a therapeutic dose of RAI. Our data show that thyroid tumors carrying BRAF(V600E) mutations are exquisitely dependent on the oncoprotein for viability and that genetic or pharmacological inhibition of its expression or activity is associated with tumor regression and restoration of RAI uptake in vivo in mice. These findings have potentially significant clinical ramifications.


Cancer Research | 2014

Inhibition of CSF-1 Receptor Improves the Antitumor Efficacy of Adoptive Cell Transfer Immunotherapy

Stephen Mok; Richard C. Koya; Christopher Tsui; Jingying Xu; Lidia Robert; Lily Wu; Thomas G. Graeber; Brian L. West; Gideon Bollag; Antoni Ribas

Colony stimulating factor 1 (CSF-1) recruits tumor-infiltrating myeloid cells (TIM) that suppress tumor immunity, including M2 macrophages and myeloid-derived suppressor cells (MDSC). The CSF-1 receptor (CSF-1R) is a tyrosine kinase that is targetable by small molecule inhibitors such as PLX3397. In this study, we used a syngeneic mouse model of BRAF(V600E)-driven melanoma to evaluate the ability of PLX3397 to improve the efficacy of adoptive cell therapy (ACT). In this model, we found that combined treatment produced superior antitumor responses compared with single treatments. In mice receiving the combined treatment, a dramatic reduction of TIMs and a skewing of MHCII(low) to MHCII(hi) macrophages were observed. Furthermore, mice receiving the combined treatment exhibited an increase in tumor-infiltrating lymphocytes (TIL) and T cells, as revealed by real-time imaging in vivo. In support of these observations, TILs from these mice released higher levels of IFN-γ. In conclusion, CSF-1R blockade with PLX3397 improved the efficacy of ACT immunotherapy by inhibiting the intratumoral accumulation of immunosuppressive macrophages.

Collaboration


Dive into the Brian L. West's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John D. Baxter

Houston Methodist Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge