Freddie Bwanga
Makerere University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Freddie Bwanga.
BMC Infectious Diseases | 2009
Freddie Bwanga; Sven Hoffner; Melles Haile; Moses Joloba
BackgroundOne of the challenges facing the tuberculosis (TB) control programmes in resource-limited settings is lack of rapid techniques for detection of drug resistant TB, particularly multi drug resistant tuberculosis (MDR TB). Results obtained with the conventional indirect susceptibility testing methods come too late to influence a timely decision on patient management. More rapid tests directly applied on sputum samples are needed. This study compared the sensitivity, specificity and time to results of four direct drug susceptibility testing tests with the conventional indirect testing for detection of resistance to rifampicin and isoniazid in M. tuberculosis. The four direct tests included two in-house phenotypic assays – Nitrate Reductase Assay (NRA) and Microscopic Observation Drug Susceptibility (MODS), and two commercially available tests – Genotype® MTBDR and Genotype® MTBDRplus (Hain Life Sciences, Nehren, Germany).MethodsA literature review and meta-analysis of study reports was performed. The Meta-Disc software was used to analyse the reports and tests for sensitivity, specificity, and area under the summary receiver operating characteristic (sROC) curves. Heterogeneity in accuracy estimates was tested with the Spearman correlation coefficient and Chi-square.ResultsEighteen direct DST reports were analysed: NRA – 4, MODS- 6, Genotype MTBDR® – 3 and Genotype® MTBDRplus – 5. The pooled sensitivity and specificity for detection of resistance to rifampicin were 99% and 100% with NRA, 96% and 96% with MODS, 99% and 98% with Genotype® MTBDR, and 99% and 99% with the new Genotype® MTBDRplus, respectively. For isoniazid it was 94% and 100% for NRA, 92% and 96% for MODS, 71% and 100% for Genotype® MTBDR, and 96% and 100% with the Genotype® MTBDRplus, respectively. The area under the summary receiver operating characteristic (sROC) curves was in ranges of 0.98 to 1.00 for all the four tests. Molecular tests were completed in 1 – 2 days and also the phenotypic assays were much more rapid than conventional testing.ConclusionDirect testing of rifampicin and isoniazid resistance in M. tuberculosis was found to be highly sensitive and specific, and allows prompt detection of MDR TB.
BMC Infectious Diseases | 2010
Heidi Albert; Freddie Bwanga; Sheena Mukkada; Barnabas Nyesiga; Julius Patrick Ademun; George Lukyamuzi; Melles Haile; Sven Hoffner; Moses Joloba; Richard O'Brien
BackgroundAbout 500 new smear-positive Multidrug-resistant tuberculosis (MDR-TB) cases are estimated to occur per year in Uganda. In 2008 in Kampala, MDR-TB prevalence was reported as 1.0% and 12.3% in new and previously treated TB cases respectively. Line probe assays (LPAs) have been recently approved for use in low income settings and can be used to screen smear-positive sputum specimens for resistance to rifampicin and isoniazid in 1-2 days.MethodsWe assessed the performance of a commercial line probe assay (Genotype MTBDRplus) for rapid detection of rifampicin and isoniazid resistance directly on smear-positive sputum specimens from 118 previously treated TB patients in a reference laboratory in Kampala, Uganda. Results were compared with MGIT 960 liquid culture and drug susceptibility testing (DST). LPA testing was also performed in parallel in a University laboratory to assess the reproducibility of results.ResultsOverall, 95.8% of smear-positive specimens gave interpretable results within 1-2 days using LPA. Sensitivity, specificity, positive and negative predictive values were 100.0%, 96.1%, 83.3% and 100.0% for detection of rifampicin resistance; 80.8%, 100.0%, 100.0% and 93.0% for detection of isoniazid resistance; and 92.3%, 96.2%, 80.0% and 98.7% for detection of multidrug-resistance compared with conventional results. Reproducibility of LPA results was very high with 98.1% concordance of results between the two laboratories.ConclusionsLPA is an appropriate tool for rapid screening for MDR-TB in Uganda and has the potential to substantially reduce the turnaround time of DST results. Careful attention must be paid to training, supervision and adherence to stringent laboratory protocols to ensure high quality results during routine implementation.
BMC Infectious Diseases | 2013
Simon Walusimbi; Freddie Bwanga; Ayesha De Costa; Melles Haile; Moses Joloba; Sven Hoffner
BackgroundSmear-negative pulmonary tuberculosis (SN-PTB), which is common in HIV-infected patients, is difficult to diagnose using smear microscopy alone. In 2007, the WHO developed an algorithm to improve the diagnosis and management of smear-negative tuberculosis in HIV prevalent and resource constrained settings. Implementation of the algorithm required individuals with presumptive TB to be initially evaluated using two sputum microscopy examinations followed by clinical diagnosis that may include chest X-ray and antibiotic treatment in smear-negative individuals. Since that time, the WHO has endorsed several new tests for diagnosis of tuberculosis. However, it is unclear how the new tests perform when compared to the WHO 2007 algorithm in diagnosis of SN-PTB. Using meta-analysis study design, we summarized and compared the accuracy of Xpert® MTB/Rif assay (GeneXpert) and Microscopic Observation Drug Susceptibility assay (MODS), with the WHO 2007 algorithm in the diagnosis of SN-PTB.MethodsA systematic review and meta-analysis of publications on GeneXpert, or MODS, or the WHO 2007 algorithm for diagnosis of SN-PTB, using culture as reference test was performed. Meta-Disc software was used to obtain pooled sensitivity and specificity of the diagnostic methods. Heterogeneity in the accuracy estimates was tested by reviewing the generated forest plots, sROC curves and the Spearman correlation coefficient of the logit of true positive rate versus the logit of false positive rate.ResultsTwenty-four publications on all three diagnostic methods were meta-analyzed. The pooled sensitivity and specificity for detection of smear-negative pulmonary tuberculosis were 67% and 98% for GeneXpert, 73% and 91% for MODS, and 61% and 69% for WHO 2007 algorithm, respectively. The sensitivity of GeneXpert reduced from 67% to 54% when sub-group analysis of studies with patient HIV prevalence ≥30% was performed.ConclusionThe GeneXpert, MODS, and the WHO algorithm have moderate to high accuracy for the diagnosis of SN-PTB. However, the accuracy of the tests is extremely variable. The setting and context under which the tests are conducted in addition to several other factors could explain this variability. There is therefore need to investigate these factors further. The information from these studies would inform the adoption and placement of these new tests.
BMC Public Health | 2015
Moses Ocan; Ekwaro A. Obuku; Freddie Bwanga; Dickens Akena; Sennono Richard; Jasper Ogwal-Okeng; Celestino Obua
BackgroundAntimicrobial self-medication is common in most low and middle income countries (LMICs). However there has been no systematic review on non-prescription antimicrobial use in these settings. This review thus intended to establish the burden, risk factors and effects of antimicrobial self-medication in Low and Middle Income Countries.MethodsIn 2012, we registered a systematic review protocol in PROSPERO (CRD42012002508). We searched PubMed, Medline, Scopus, and Embase databases using the following terms; “self-medication”, “non-prescription”, ‘self-treatment’, “antimicrobial”, “antimalarial”, “antibiotic”, “antibacterial” “2002-2012” and combining them using Boolean operators. We performed independent and duplicate screening and abstraction of study administrative data, prevalence, determinants, type of antimicrobial agent, source, disease conditions, inappropriate use, drug adverse events and clinical outcomes of antibiotic self-medication where possible. We performed a Random Effects Meta-analysis.ResultsA total of thirty four (34) studies involving 31,340 participants were included in the review. The overall prevalence of antimicrobial self-medication was 38.8 % (95 % CI: 29.5-48.1). Most studies assessed non-prescription use of antibacterial (17/34: 50 %) and antimalarial (5/34: 14.7 %) agents. The common disease symptoms managed were, respiratory (50 %), fever (47 %) and gastrointestinal (45 %). The major sources of antimicrobials included, pharmacies (65.5 %), leftover drugs (50 %) and drug shops (37.5 %). Twelve (12) studies reported inappropriate drug use; not completing dose (6/12) and sharing of medicines (4/12). The main determinants of antimicrobial self-medication include, level of education, age, gender, past successful use, severity of illness and income. Reported negative outcomes of antimicrobial self-medication included, allergies (2/34: 5.9 %), lack of cure (4/34: 11.8 %) and causing death (2/34: 5.9 %). The commonly reported positive outcome was recovery from illness (4/34: 11.8 %).ConclusionThe prevalence of antimicrobial self-medication is high and varies in different communities as well as by social determinants of health and is frequently associated with inappropriate drug use.
BMC Research Notes | 2013
Jeremiah Seni; Christine F. Najjuka; David P. Kateete; Patson Makobore; Moses Joloba; Henry Kajumbula; Antony Kapesa; Freddie Bwanga
BackgroundSurgical site infections (SSIs) are difficult to treat and are associated with substantially longer hospital stay, higher treatment cost, morbidity and mortality, particularly when the etiological agent is multidrug-resistant (MDR). To address the limited data in Uganda on SSIs, we present the spectrum of bacteria isolated from hospitalized patients, the magnitude and impact of MDR bacterial isolates among patients with SSIs.MethodsA descriptive cross sectional study was conducted from September 2011 through April 2012 involving 314 patients with SSIs in the obstetrics & gynecology, general surgery and orthopedic wards at Mulago National Hospital in Kampala, Uganda. Wound swabs were taken and processed using standard microbiological methods. Clinico-demographic characteristics of patients were obtained using structured questionnaires and patients’ files.ResultsOf the 314 enrolled patients with SSIs (mean age 29.7 ±13.14 years), 239 (76.1%) were female. More than half of the patients were from obstetrics and gynecology (62.1%, 195/314). Of 314 wound swabs taken, 68.8% (216/314) were culture positive aerobically, yielding 304 bacterial isolates; of which 23.7% (72/304) were Escherichia coli and 21.1% (64/304) were Staphylococcus aureus. More than three quarters of Enterobacteriaceae were found to be extended spectrum beta lactamase (ESBL) producers and 37.5% of S. aureus were Methicillin resistant S. aureus (MRSA). MDR occurred in 78.3% (238/304) of the isolates; these were more among Gram-negative bacteria (78.6%, 187/238) compared to Gram-positive bacteria (21.4%, 51/238), (p-value < 0.0001, χ2 = 49.219). Amikacin and imepenem for ESBL-producing Enterobacteriacea and vancomycin for MRSA showed excellent performance except that they remain expensive drugs in Uganda.ConclusionMost SSIs at Mulago National Hospital are due to MDR bacteria. Isolation of MRSA and ESBL-producing Enterobacteriaceae in higher proportions than previously reported calls for laboratory guided SSIs- therapy and strengthening of infection control surveillance in this setting.
PLOS ONE | 2014
Moses Ocan; Freddie Bwanga; Godfrey S. Bbosa; Danstan Bagenda; Paul Waako; Jasper Ogwal-Okeng; Celestino Obua
Self-medication with antimicrobial agents is a common form of self-care among patients globally with the prevalence and nature differing from country to country. Here we assessed the prevalence and predictors of antimicrobial self-medication in post-conflict northern Uganda. A cross-sectional study was carried out using structured interviews on 892 adult (≥18 years) participants. Information on drug name, prescriber, source, cost, quantity of drug obtained, and drug use was collected. Households were randomly selected using multistage cluster sampling method. One respondent who reported having an illness within three months in each household was recruited. In each household, information was obtained from only one adult individual. Data was analyzed using STATA at 95% level of significance. The study found that a high proportion (75.7%) of the respondents practiced antimicrobial self-medication. Fever, headache, lack of appetite and body weakness were the disease symptoms most treated through self-medication (30.3%). The commonly self-medicated antimicrobials were coartem (27.3%), amoxicillin (21.7%), metronidazole (12.3%), and cotrimoxazole (11.6%). Drug use among respondents was mainly initiated by self-prescription (46.5%) and drug shop attendants (57.6%). On average, participants obtained 13.9±8.8 (95%CI: 12.6–13.8) tablets/capsules of antimicrobial drugs from drug shops and drugs were used for an average of 3.7±2.8 days (95%CI: 3.3–3.5). Over half (68.2%) of the respondents would recommend self-medication to another sick person. A high proportion (76%) of respondents reported that antimicrobial self-medication had associated risks such as wastage of money (42.1%), drug resistance (33.2%), and masking symptoms of underlying disease (15.5%). Predictors of self-medication with antimicrobial agents included gender, drug knowledge, drug leaflets, advice from friends, previous experience, long waiting time, and distance to the health facility. Despite knowledge of associated risks, use of self-medication with antimicrobial drugs in management of disease symptoms is a common practice in post-conflict northern Uganda.
PLOS Medicine | 2015
Nelson Sewankambo; James K Tumwine; Göran Tomson; Celestino Obua; Freddie Bwanga; Peter Waiswa; Elly Katabira; Hannah Akuffo; Kristina Persson; Stefan Peterson
Enabling Dynamic Partnerships through Joint Degrees between Low- and High-Income Countries for Capacity Development in Global Health Research : Experience from the Karolinska Institutet/Makerere University Partnership
BMC Infectious Diseases | 2011
Joel Bazira; Benon B. Asiimwe; Moses Joloba; Freddie Bwanga; Mecky Matee
BackgroundDetermination of the prevalence and drug susceptibility of the M. tuberculosis strains is important in tuberculosis control. We determined the genetic diversity and susceptibility profiles of mycobacteria isolated from tuberculosis patients in Mbarara, South Western Uganda.MethodsWe enrolled, consecutively; all newly diagnosed and previously treated smear-positive TB patients aged ≥ 18 years. The isolates were characterized using regions of difference (RD) analysis and spoligotyping. Drug resistance against rifampicin and isoniazid were tested using the Genotype® MDRTBplus assay and the indirect proportion method on Lowenstein-Jensen media. HIV-1 testing was performed using two rapid HIV tests.ResultsA total of 125 isolates from 167 TB suspects (60% males) with a mean age 33.7 years and HIV prevalence of 67.9% (55/81) were analyzed. Majority (92.8%) were new cases while only 7.2% were retreatment cases. All the 125 isolates were identified as M. tuberculosis strict sense with the majority (92.8%) of the isolates being modern strains while seven (7.2%) isolates were ancestral strains. Spoligotyping revealed 79 spoligotype patterns, with an overall diversity of 63.2%. Sixty two (49.6%) of the isolates formed 16 clusters consisting of 2-15 isolates each. A majority (59.2%) of the isolates belong to the Uganda genotype group of strains. The major shared spoligotypes in our sample were SIT 135 (T2-Uganda) with 15 isolates and SIT 128 (T2) with 3 isolates. Sixty nine (87%) of the 79 patterns had not yet been defined in the SpolDB4.0.database. Resistance mutations to either RIF or INH were detected in 6.4% of the isolates. Multidrug resistance, INH and RIF resistance was 1.6%, 3.2% and 4.8%, respectively. The rpoβ gene mutations seen in the sample were D516V, S531L, H526Y H526D and D516V, while one strain had a Δ1 mutation in the wild type probes. There were three strains with katG (codon 315) gene mutations only while one strain showed the inhA promoter gene mutation.ConclusionThe present study shows that the TB epidemic in Mbarara is caused by modern M. tuberculosis strains mainly belonging to the Uganda genotype and anti-TB drug resistance rate in the region is low.
BioMed Research International | 2014
Martha F. Mushi; Stephen E. Mshana; Can Imirzalioglu; Freddie Bwanga
The burden of antimicrobial resistance (AMR) is rapidly growing across antibiotic classes, with increased detection of isolates resistant to carbapenems. Data on the prevalence of carbapenem resistance in developing countries is limited; therefore, in this study, we determined the prevalence of carbapenemase genes among multidrug resistant gram negative bacteria (MDR-GNB) isolated from clinical specimens in a tertiary hospital in Mwanza, Tanzania. A total of 227 MDR-GNB isolates were analyzed for carbapenem resistance genes. For each isolate, five different PCR assays were performed, allowing for the detection of the major carbapenemase genes, including those encoding the VIM-, IMP-, and NDM-type metallo-beta-lactamases, the class A KPC-type carbapenemases, and the class D OXA-48 enzyme. Of 227 isolates, 80 (35%) were positive for one or more carbapenemase gene. IMP-types were the most predominant gene followed by VIM, in 49 (21.59%) and 28 (12%) isolates, respectively. Carbapenemase genes were most detected in K. pneumoniae 24 (11%), followed by P. aeruginosa 23 (10%), and E. coli with 19 isolates (8%). We have demonstrated for the first time a high prevalence of MDR-GNB clinical isolates having carbapenem resistance genes in Tanzania. We recommend routine testing for carbapenem resistance among the MDR-GNB particularly in systemic infections.
Journal of Ethnopharmacology | 2014
Francis Ocheng; Freddie Bwanga; Moses Joloba; Ann-Karin Borg-Karlson; Anders Gustafsson; Celestino Obua
ETHNOPHARMACOLOGICAL RELEVANCE Medicinal plants are widely used for treatment of oral/dental diseases in Uganda. AIM OF THE STUDY To investigate antibacterial activities of 16 commonly used medicinal plants on microorganisms associated with periodontal diseases (PD) and dental caries (DC). MATERIALS AND METHODS Pulp juice and solvent extracts (hexane, methanol and water) from the plants were tested against Aggregatibacter actinomycetemcomitans, Porphyromonas gingivalis, Tannerella forsythia associated with PD and Streptococcus mutans, Streptococcus sobrinus, Lactobacillus acidophilus associated with DC. Tests were done using agar well-diffusion (pulp juice) and agar-dilution (Solvent extracts) assays. RESULTS Pulp juice from Zanthoxylum chalybeum and Euclea latidens showed activity against all the bacteria, Zanthoxylum chalybeum being most active. Hexane extract from aerial part of Helichrysum odoratissimum was most active (MIC: 0.125-0.5 mg/ml). Methanol extract from leaves of Lantana trifolia showed activity against all bacteria (MIC: 0.25-1 mg/ml). CONCLUSION Several of the tested plants showed antibacterial activities against bacteria associated with PD and DC, meriting further investigations.