Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédéric Alonzo is active.

Publication


Featured researches published by Frédéric Alonzo.


Aquatic Toxicology | 2010

Effects of chronic uranium exposure on life history and physiology of Daphnia magna over three successive generations

Sandrine Massarin; Frédéric Alonzo; L. Garcia-Sanchez; Rodolphe Gilbin; Jacqueline Garnier-Laplace; Jean-Christophe Poggiale

Daphnia magna was exposed to waterborne uranium (U) at concentrations ranging from 10 to 75 microgL(-1) over three successive generations (F0, F1 and F2). Progeny was either exposed to the same concentration as mothers to test whether susceptibility to this radioelement might vary across generations or returned to a clean medium to examine their capacity to recover after parental exposure. Maximum body burdens of 17, 32 and 54 ng U daphnid(-1) were measured in the different exposure conditions and converted to corresponding internal alpha dose rates. Low values of 5, 12 and 20 microGy h(-1) suggested that radiotoxicity was negligible compared to chemotoxicity. An increasing sensitivity to toxicity was shown across exposed generations with significant effects observed on life history traits and physiology as low as 10 microgL(-1) and a capacity to recover partially in a clean medium after parental exposure to <or=25 microgL(-1). Using a (14)C-labelled food technique, the study showed that uranium affected carbon assimilation in F0 at concentrations of 25 and 75 microgL(-1) (34 and 80% reduction respectively) and as low as 10 microgL(-1) in F1 and F2 (40 and 36% reduction respectively). Consequences were strong for both somatic growth and reproduction and increased in severity across generations. Maximum size was reduced by 12% at 75 microgL(-1) in F0 and 23% at 25 microgL(-1) in F2. Reduction in 21-day fecundity ranged from 27 to 48% respectively at 25 and 75 microgL(-1) in F0 and from 43 to 71% respectively at 10 and 25 microgL(-1) in F2. Growth retardation caused a delay in deposition of first brood of 1.3 days at 75 microgL(-1) in F0, of 1.9 days at 25 microgL(-1) in F1 and of 5 days at 25 microgL(-1) in F2. Differences in respiration rates and egg dry mass between the control and exposed daphnids were mainly an indirect result of uranium effect on body size. The observed increase in toxic effects across generations indicated the necessity of carrying out multigeneration tests to assess environmental risk of uranium in daphnids.


Journal of Environmental Radioactivity | 2008

Issues and practices in the use of effects data from FREDERICA in the ERICA Integrated Approach

Jacqueline Garnier-Laplace; David Copplestone; Rodolphe Gilbin; Frédéric Alonzo; Philippe Ciffroy; Michael Gilek; A. Agüero; Mikael Björk; Deborah Oughton; Alicja Jaworska; Carl-Magnus Larsson; J. L. Hingston

The ERICA Integrated Approach requires that a risk assessment screening dose rate is defined for the risk characterisation within Tiers 1 and 2. At Tier 3, no numerical screening dose rate is used, and the risk characterisation is driven by methods that can evaluate the possible effects of ionising radiation on reproduction, mortality and morbidity. Species sensitivity distribution has been used to derive the ERICA risk assessment predicted no-effect dose rate (PNEDR). The method used was based on the mathematical processing of data from FRED (FASSET radiation effects database merged with the EPIC database to form FREDERICA) and resulted in a PNEDR of 10 microGy/h. This rate was assumed to ascribe sufficient protection of all ecosystems from detrimental effects on structure and function under chronic exposure. The value was weighed against a number of points of comparison: (i) PNEDR values obtained by application of the safety factor method, (ii) background levels, (iii) dose rates triggering effects on radioactively contaminated sites and (iv) former guidelines from literature reviews. In Tier 3, the effects analysis must be driven by the problem formulation and is thus highly case specific. Instead of specific recommendations on numeric values, guidance on the sorts of methods that may be applied for refined effect analysis is provided and illustrated.


Aquatic Toxicology | 2008

Effects of waterborne uranium on survival, growth, reproduction and physiological processes of the freshwater cladoceran Daphnia magna.

Florence Anna Zeman; Rodolphe Gilbin; Frédéric Alonzo; Catherine Lecomte-Pradines; Jacqueline Garnier-Laplace; Catherine Aliaume

Acute uranium toxicity (48 h immobilisation test) for Daphnia magna was determined in two different exposure media, differing in pH and alkalinity. LC(50) varied strongly between media, from 390+/-40 microgL(-1)U at pH 7 to 7.8+/-3.2 mgL(-1)U at pH 8. According to the free ion activity model uranium toxicity varies as a function of free uranyl concentration. This assumption was examined by calculating uranium speciation in our water conditions and in those reported in the literature. Predicted changes in free uranyl concentration could not solely explain observed differences in toxicity, which might be due to a competition or a non-competitive inhibition of H(+) for uranium transport and/or the involvement of other bioavailable chemical species of uranium. Chronic effects of uranium at pH 7 on mortality, ingestion and respiration, fecundity and dry mass of females, eggs and neonates were investigated during 21-day exposure experiments. A mortality of 10% was observed at 100 microgL(-1)U and EC(10) for reproduction was 14+/-7 microgL(-1)U. Scope for growth was affected through a reduction in feeding activity and an increase in oxygen consumption at 25 microgL(-1)U after 7 days of exposure. This had strong consequences for somatic growth and reproduction, which decreased, respectively, by 50% and 65% at 50 microgL(-1)U after 7 days and at 25 microgL(-1)U after 21 days. Uranium bioaccumulation was quantified and associated internal alpha dose rates from 2.1 to 13 microGyh(-1) were estimated. Compared to the toxicity of other alpha-emitting radionuclides and stable trace metals, our results confirmed the general assumption that uranium chemical toxicity predominates over its radiotoxicity.


Aquatic Toxicology | 2008

Increased effects of internal alpha irradiation in Daphnia magna after chronic exposure over three successive generations

Frédéric Alonzo; Rodolphe Gilbin; Florence Anna Zeman; Jacqueline Garnier-Laplace

A 70-day experiment was performed with Daphnia magna exposed to waterborne Am-241 on a range of concentrations (from 0.4 to 40 Bq ml(-1)) in order to test chronic effects of internal alpha irradiation on respiration, somatic growth and reproduction over three successive generations. Changes in Am-241 concentrations were followed in the water and in daphnid tissues, eggs and cuticles. Corresponding average dose rates of 0.3, 1.5 and 15 mGy h(-1) were estimated. This study confirmed that oxygen consumption increased significantly in the first generation (F0) after 6 days of exposure to a dose rate >or=1.5 mGy h(-1). Consequences were limited to a reduction in body length (5%) and dry mass of females (16%) and eggs (8%) after 23 days of exposure, while mortality and fecundity remained unaffected. New cohorts were started with neonates of broods 1 and 5, to examine potential consequences of the reduced mass of offspring for subsequent exposed generations. Results strongly contrasted with those observed in F0. At the highest dose rate, an early mortality of 38-90% affected juveniles while survivors showed delayed reproduction and reduced fecundity in F1 and F2. At 0.3 and 1.5 mGy h(-1), mortality ranged from 31 to 38% of daphnids depending on dose rate, but was observed only in generation F1 started with neonates of the brood 1. Reproduction was affected through a reduction in the proportion of breeding females, occurring in the first offspring generation at 1.5 mGy h(-1) (to 62% of total daphnids) and in the second generation at 0.3 mGy h(-1) (to 69% of total daphnids). Oxygen consumption remained significantly higher at dose rates >or=0.3 mGy h(-1) than in the control in almost every generation. Body size and mass continued decreasing in relation to dose rate, with a significant reduction in mass ranging from 15% at 0.3 mGy h(-1) to 27% at 15 mGy h(-1) in the second offspring generation.


Environmental Science & Technology | 2011

Biology-Based Modeling To Analyze Uranium Toxicity Data on Daphnia magna in a Multigeneration Study

Sandrine Massarin; Rémy Beaudouin; Florence Anna Zeman; Magali Floriani; Rodolphe Gilbin; Frédéric Alonzo; Alexandre R.R. Péry

Recent studies have investigated chronic toxicity of waterborne depleted uranium on the life cycle and physiology of Daphnia magna. In particular, a reduction in food assimilation was observed. Our aims here were to examine whether this reduction could fully account for observed effects on both growth and reproduction, for three successive generations, and to investigate through microscope analyses whether this reduction resulted from direct damage to the intestinal epithelium. We analyzed data obtained by exposing Daphnia magna to uranium over three successive generations. We used energy-based models, which are both able to fit simultaneously growth and reproduction and are biologically relevant. Two possible modes of action were compared - decrease in food assimilation rate and increase in maintenance costs. In our models, effects were related either to internal concentration or to exposure concentration. The model that fitted the data best represented a decrease in food assimilation related to exposure concentration. Furthermore, observations of consequent histological damage to the intestinal epithelium, together with uranium precipitates in the epithelial cells, supported the assumption that uranium has direct effects on the digestive tract. We were able to model the data in all generations and showed that sensitivity increased from one generation to the next, in particular through a significant increase of the intensity of effect, once the threshold for appearance of effects was exceeded.


Aquatic Toxicology | 2015

DNA alterations and effects on growth and reproduction in Daphnia magna during chronic exposure to gamma radiation over three successive generations

Florian Parisot; Jean-Paul Bourdineaud; Delphine Plaire; Christelle Adam-Guillermin; Frédéric Alonzo

This study examined chronic effects of external Cs-137 gamma radiation on Daphnia magna exposed over three successive generations (F0, F1 and F2) to environmentally relevant dose rates (ranging from 0.007 to 35.4 mGy h(-1)). Investigated endpoints included survival, growth, reproduction and DNA alterations quantified using random-amplified polymorphic DNA polymerase chain reaction (RAPD-PCR). Results demonstrated that radiation effects on survival, growth and reproduction increased in severity from generation F0 to generation F2. Mortality after 21 days at 35.4 mGy h(-1) increased from 20% in F0 to 30% in F2. Growth was affected by a slight reduction in maximum length at 35.4 mGy h(-1) in F0 and by reductions of 5 and 13% in growth rate, respectively, at 4.70 and 35.4 mGy h(-1) in F2. Reproduction was affected by a reduction of 19% in 21 day-fecundity at 35.4 mGy h(-1) in F0 and by a delay of 1.9 days in brood release as low as 0.070 mGy h(-1) in F2. In parallel, DNA alterations became significant at decreasing dose rates over the course of F0 (from 4.70 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days) and from F0 to F2 (0.070 mGy h(-1) at hatching to 0.007 mGy h(-1) after ∼21 days), demonstrating their rapid accumulation in F0 daphnids and their transmission to offspring generations. Transiently more efficient DNA repair leading to some recovery at the organism level was suggested in F1, with no effect on survival, a slight reduction of 12% in 21 day-fecundity at 35.4 mGy h(-1) and DNA alterations significant at highest dose rates only. The study improved our understanding of long term responses to low doses of radiation at the molecular and organismic levels in a non-human species for a better radioprotection of aquatic ecosystems.


Comparative Biochemistry and Physiology C-toxicology & Pharmacology | 2013

Transmission of DNA damage and increasing reprotoxic effects over two generations of Daphnia magna exposed to uranium.

Delphine Plaire; Jean-Paul Bourdineaud; Antoine Alonzo; Virginie Camilleri; L. Garcia-Sanchez; Christelle Adam-Guillermin; Frédéric Alonzo

This study aimed to examine the mechanisms involved in the transgenerational increase in Daphnia magna sensitivity to waterborne depleted uranium (DU) under controlled laboratory conditions. Daphnids were exposed to concentrations ranging from 2 to 50 μg L(-1) over two successive generations. Genotoxic effects were assessed using random amplified polymorphic DNA and real time PCR (RAPD-PCR). Effects on life history (survival, fecundity and somatic growth) were monitored from hatching to release of brood 5. Different exposure regimes were tested to investigate the specific sensitivity of various life stages to DU. When daphnids were exposed continuously or from hatching to deposition of brood 5, results demonstrated that DNA damage accumulated in females and were transmitted to offspring in parallel with an increase in severity of effects on life history across generations. When daphnids were exposed during the embryo stage only, DU exposure induced transient DNA damage which was repaired after neonates were returned to a clean medium. Effects on life history remained visible after hatching and did not significantly increase in severity across generations. The present results suggest that DNA damage might be an early indicator of future effects on life history.


Environmental Science & Technology | 2012

Population-level modeling to account for multigenerational effects of uranium in Daphnia magna.

Pierre-Albin Biron; Sandrine Massarin; Frédéric Alonzo; L. Garcia-Sanchez; Sandrine Charles; Elise Billoir

As part of the ecological risk assessment associated with radionuclides in freshwater ecosystems, toxicity of waterborne uranium was recently investigated in the microcrustacean Daphnia magna over a three-generation exposure (F0, F1, and F2). Toxic effects on daphnid life history and physiology, increasing over generations, were demonstrated at the organism level under controlled laboratory conditions. These effects were modeled using an approach based on the dynamic energy budget (DEB). For each of the three successive generations, DEBtox (dynamic energy budget applied to toxicity data) models were fitted to experimental data. Lethal and sublethal DEBtox outcomes and their uncertainty were projected to the population level using population matrix techniques. To do so, we compared two modeling approaches in which experimental results from F0, F1, and F2 generations were either considered separately (F0-, F1-, and F2-based simulations) or together in the actual succession of F0, F1, and F2 generations (multi-F-based simulation). The first approach showed that considering results from F0 only (equivalent to a standard toxicity test) would lead to a severe underestimation of uranium toxicity at the population level. Results from the second approach showed that combining effects in successive generations cannot generally be simplified to the worst case among F0-, F1-, and F2-based population dynamics.


Journal of Environmental Radioactivity | 2016

Population modelling to compare chronic external radiotoxicity between individual and population endpoints in four taxonomic groups

Frédéric Alonzo; Turid Hertel-Aas; A. Real; Emilie Lance; L. Garcia-Sanchez; Clare Bradshaw; Jordi Vives i Batlle; Deborah Oughton; Jacqueline Garnier-Laplace

In this study, we modelled population responses to chronic external gamma radiation in 12 laboratory species (including aquatic and soil invertebrates, fish and terrestrial mammals). Our aim was to compare radiosensitivity between individual and population endpoints and to examine how internationally proposed benchmarks for environmental radioprotection protected species against various risks at the population level. To do so, we used population matrix models, combining life history and chronic radiotoxicity data (derived from laboratory experiments and described in the literature and the FREDERICA database) to simulate changes in population endpoints (net reproductive rate R0, asymptotic population growth rate λ, equilibrium population size Neq) for a range of dose rates. Elasticity analyses of models showed that population responses differed depending on the affected individual endpoint (juvenile or adult survival, delay in maturity or reduction in fecundity), the considered population endpoint (R0, λ or Neq) and the life history of the studied species. Among population endpoints, net reproductive rate R0 showed the lowest EDR10 (effective dose rate inducing 10% effect) in all species, with values ranging from 26 μGy h(-1) in the mouse Mus musculus to 38,000 μGy h(-1) in the fish Oryzias latipes. For several species, EDR10 for population endpoints were lower than the lowest EDR10 for individual endpoints. Various population level risks, differing in severity for the population, were investigated. Population extinction (predicted when radiation effects caused population growth rate λ to decrease below 1, indicating that no population growth in the long term) was predicted for dose rates ranging from 2700 μGy h(-1) in fish to 12,000 μGy h(-1) in soil invertebrates. A milder risk, that population growth rate λ will be reduced by 10% of the reduction causing extinction, was predicted for dose rates ranging from 24 μGy h(-1) in mammals to 1800 μGy h(-1) in soil invertebrates. These predictions suggested that proposed reference benchmarks from the literature for different taxonomic groups protected all simulated species against population extinction. A generic reference benchmark of 10 μGy h(-1) protected all simulated species against 10% of the effect causing population extinction. Finally, a risk of pseudo-extinction was predicted from 2.0 μGy h(-1) in mammals to 970 μGy h(-1) in soil invertebrates, representing a slight but statistically significant population decline, the importance of which remains to be evaluated in natural settings.


Science of The Total Environment | 2012

Modelling population-level consequences of chronic external gamma irradiation in aquatic invertebrates under laboratory conditions

Emilie Lance; Frédéric Alonzo; L. Garcia-Sanchez; K. Beaugelin-Seiller; Jacqueline Garnier-Laplace

We modelled population-level consequences of chronic external gamma irradiation in aquatic invertebrates under laboratory conditions. We used Leslie matrices to combine life-history characteristics (duration of life stages, survival and fecundity rates) and dose rate-response curves for hatching, survival and reproduction fitted on effect data from the FREDERICA database. Changes in net reproductive rate R₀ (offspring per individual) and asymptotic population growth rate λ (dimensionless) were calculated over a range of dose rates in two marine polychaetes (Neanthes arenaceodentata and Ophryotrocha diadema) and a freshwater gastropod (Physa heterostropha). Sensitivities in R₀ and λ to changes in life-history traits were analysed in each species. Results showed that fecundity has the strongest influence on R₀. A delay in age at first reproduction is most critical for λ independent of the species. Fast growing species were proportionally more sensitive to changes in individual endpoints than slow growing species. Reduction of 10% in population λ were predicted at dose rates of 6918, 5012 and 74,131 μGy·h⁻¹ in N. arenaceodentata, O. diadema and P. heterostropha respectively, resulting from a combination of strong effects on several individual endpoints in each species. These observations made 10%-reduction in λ a poor criterion for population protection. The lowest significant changes in R₀ and λ were respectively predicted at a same dose rate of 1412 μGy h⁻¹ in N. arenaceodentata, at 760 and 716 μGy h⁻¹ in O. diadema and at 12,767 and 13,759 μGy h⁻¹ in P. heterostropha. These values resulted from a combination of slight but significant changes in several measured endpoints and were lower than effective dose rates calculated for the individual level in O. diadema and P. heterostropha. The relevance of the experimental dataset (external irradiation rather than contamination, exposure over one generation only, effects on survival and reproduction only) for predicting population responses was discussed.

Collaboration


Dive into the Frédéric Alonzo's collaboration.

Top Co-Authors

Avatar

Rodolphe Gilbin

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Jacqueline Garnier-Laplace

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Deborah Oughton

Norwegian University of Life Sciences

View shared research outputs
Top Co-Authors

Avatar

Christelle Adam-Guillermin

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Laureline Février

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar

Thomas G. Hinton

Institut de radioprotection et de sûreté nucléaire

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. Real

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Hildegarde Vandenhove

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge