Frederic Aparicio
Polytechnic University of Valencia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frederic Aparicio.
European Journal of Plant Pathology | 2005
J. A. Sánchez-Navarro; Frederic Aparicio; M. C. Herranz; Angelantonio Minafra; A. Myrta; Vicente Pallás
A sensitive and reliable one step RT-PCR reaction with an internal control has been developed to detect and differentiate eight important viruses that affect stone fruit tress: Apple mosaic virus (ApMV), Prunus necrotic ringspot virus (PNRSV), Prune dwarf virus (PDV), American plum line pattern virus (APLPV), Plum pox virus (PPV), Apple chlorotic leaf spot virus (ACLSV), Apricot latent virus (ApLV) and Plum bark necrosis stem pitting associated virus (PBNSPaV). In addition, we investigated the detection limit and the efficiency of three different nucleic acid extraction methods that avoid the use of organic solvents, for both multiplex RT-PCR and dot-blot hybridisation assays. The primer cocktail was used to analyse 38 stone fruits originating from nine different countries and six species. A large number of virus combinations was detected and up to three different viruses were observed in five samples. A decrease in sensitivity was observed when the primer cocktail contained more than five different pair primers. However, comparative analyses showed that the multiplex RT-PCR containing the eight virus pair primers was even more sensitive than the ELISA or molecular hybridisation assays. The use of the multiplex RT-PCR technology in routine diagnosis of stone fruit tree viruses is discussed.
Molecular Plant-microbe Interactions | 2012
Mari Carmen Herranz; Vicente Pallás; Frederic Aparicio
In addition to virion formation, the coat protein (CP) of Alfalfa mosaic virus (AMV) is involved in the regulation of replication and translation of viral RNAs, and in cell-to-cell and systemic movement of the virus. An intriguing feature of the AMV CP is its nuclear and nucleolar accumulation. Here, we identify an N-terminal lysine-rich nucleolar localization signal (NoLS) in the AMV CP required to both enter the nucleus and accumulate in the nucleolus of infected cells, and a C-terminal leucine-rich domain which might function as a nuclear export signal. Moreover, we demonstrate that AMV CP interacts with importin-α, a component of the classical nuclear import pathway. A mutant AMV RNA 3 unable to target the nucleolus exhibited reduced plus-strand RNA synthesis and cell-to-cell spread. Moreover, virion formation and systemic movement were completely abolished in plants infected with this mutant. In vitro analysis demonstrated that specific lysine residues within the NoLS are also involved in modulating CP-RNA binding and CP dimerization, suggesting that the NoLS represents a multifunctional domain within the AMV CP. The observation that nuclear and nucleolar import signals mask RNA-binding properties of AMV CP, essential for viral replication and translation, supports a model in which viral expression is carefully modulated by a cytoplasmic/nuclear balance of CP accumulation.
Virus Genes | 2002
Frederic Aparicio; Vicente Pallás
The nucleotide sequences of the RNA 3 of fifteen isolates of Prunus necrotic ringspot virus (PNRSV) varying in the symptomatology they cause in six different Prunus spp. were determined. Analysis of the molecular variability has allowed, in addition to study the phylogenetic relationships among them, to evaluate the minimal requirements for the synthesis of the subgenomic RNA in Ilarvirus genus and their comparison to other members of the Bromoviridae family. Computer assisted comparisons led recently to Jaspars (Virus Genes 17, 233–242, 1998) to propose that a hairpin structure in viral minus strand RNA is required for subgenomic promoter activity of viruses from at least two, and possibly all five, genera in the family of Bromoviridae. For PNRSV and Apple mosaic virus two stable hairpins were proposed whereas for the rest of Ilarviruses and the other four genera of the Bromoviridae family only one stable hairpin was predicted. Comparative analysis of this region among the fifteen PNRSV isolates characterized in this study revealed that two of them showed a 12-nt deletion that led to the disappearance of the most proximal hairpin to the initiation site. Interestingly, the only hairpin found in these two isolates is very similar in primary and secondary structure to the one previously shown in Brome mosaic virus to be required for the synthesis of the subgenomic RNA. In this hairpin, the molecular diversity was concentrated mostly at the loop whereas compensatory mutations were observed at the base of the stem strongly suggesting its functional relevance. The evolutionary implications of these observations are discussed.
Archives of Virology | 2008
Nicola Fiore; Thor Vinícius Martins Fajardo; S. Prodan; M. C. Herranz; Frederic Aparicio; Jaime Montealegre; Santiago F. Elena; Vicente Pallás; J. A. Sánchez-Navarro
Prunus necrotic ringspot virus (PNRSV) is distributed worldwide, but no molecular data have been previously reported from South American isolates. The nucleotide sequences corresponding to the movement (MP) and coat (CP) proteins of 23 isolates of PNRSV from Chile, Brazil, and Uruguay, and from different Prunus species, have been obtained. Phylogenetic analysis performed with full-length MP and CP sequences from all the PNRSV isolates confirmed the clustering of the isolates into the previously reported PV32-I, PV96-II and PE5-III phylogroups. No association was found between specific sequences and host, geographic origin or symptomatology. Comparative analysis showed that both MP and CP have phylogroup-specific amino acids and all of the motifs previously characterized for both proteins. The study of the distribution of synonymous and nonsynonymous changes along both open reading frames revealed that most amino acid sites are under the effect of negative purifying selection.
Advances in Virus Research | 2013
Vicente Pallás; Frederic Aparicio; Mari Carmen Herranz; J. A. Sánchez-Navarro; S. W. Scott
Ilarviruses were among the first 16 groups of plant viruses approved by ICTV. Like Alfalfa mosaic virus (AMV), bromoviruses, and cucumoviruses they are isometric viruses and possess a single-stranded, tripartite RNA genome. However, unlike these other three groups, ilarviruses were recognized as being recalcitrant subjects for research (their ready lability is reflected in the sigla used to create the group name) and were renowned as unpromising subjects for the production of antisera. However, it was recognized that they shared properties with AMV when the phenomenon of genome activation, in which the coat protein (CP) of the virus is required to be present to initiate infection, was demonstrated to cross group boundaries. The CP of AMV could activate the genome of an ilarvirus and vice versa. Development of the molecular information for ilarviruses lagged behind the knowledge available for the more extensively studied AMV, bromoviruses, and cucumoviruses. In the past 20 years, genomic data for most known ilarviruses have been developed facilitating their detection and allowing the factors involved in the molecular biology of the genus to be investigated. Much information has been obtained using Prunus necrotic ringspot virus and the more extensively studied AMV. A relationship between some ilarviruses and the cucumoviruses has been defined with the recognition that members of both genera encode a 2b protein involved in RNA silencing and long distance viral movement. Here, we present a review of the current knowledge of both the taxonomy and the molecular biology of this genus of agronomically and horticulturally important viruses.
European Journal of Plant Pathology | 2009
Frederic Aparicio; Salvador Soler; José Aramburu; Luis Galipienso; Fernando Nuez; Vicente Pallás; Carmelo López
A polyprobe for the simultaneous detection by non-isotopic molecular hybridisation has been developed to detect any of the following six viruses causing important economic losses in tomato crops: Tomato spotted wilt virus, Tomato mosaic virus, Pepino mosaic virus, Cucumber mosaic virus, Potato Y virus and Parietaria mottle virus. The polyprobe detected all six viruses with similar sensitivity to that obtained using individual riboprobes. In addition, we evaluated the possible use of the tissue-printing as a sample preparation technique applied to routine diagnosis of tomato plants with the polyprobe.
Proceedings of the National Academy of Sciences of the United States of America | 2017
Mireya Martínez-Pérez; Frederic Aparicio; María Pilar López-Gresa; José M. Bellés; J. A. Sánchez-Navarro; Vicente Pallás
Significance N6-methyladenosine (m6A) modification has been found to constitute an important regulatory mechanism in RNA biology. Unlike mammals and yeast, no component of the m6A cellular machinery has been described in plants at present. Although the influence of the m6A cellular machinery has been suspected to occur in the plant virus cycle, it has never been proved. Here we have identified a plant protein with m6A demethylase activity (atALKBH9B) and demonstrate that this protein removes m6A modification from RNA in vitro. Remarkably, we found that m6A abundance on the viral genome of alfalfa mosaic virus is influenced by atALKBH9B activity and regulates viral infection. This study extends the vast repertoire that plants exploit to control cytoplasmic-replicating RNA viruses. N6-methyladenosine (m6A) is an internal, reversible nucleotide modification that constitutes an important regulatory mechanism in RNA biology. Unlike mammals and yeast, no component of the m6A cellular machinery has been described in plants at present. m6A has been identified in the genomic RNAs of diverse mammalian viruses and, additionally, viral infection was found to be modulated by the abundance of m6A in viral RNAs. Here we show that the Arabidopsis thaliana protein atALKBH9B (At2g17970) is a demethylase that removes m6A from single-stranded RNA molecules in vitro. atALKBH9B accumulates in cytoplasmic granules, which colocalize with siRNA bodies and associate with P bodies, suggesting that atALKBH9B m6A demethylase activity could be linked to mRNA silencing and/or mRNA decay processes. Moreover, we identified the presence of m6A in the genomes of two members of the Bromoviridae family, alfalfa mosaic virus (AMV) and cucumber mosaic virus (CMV). The demethylation activity of atALKBH9B affected the infectivity of AMV but not of CMV, correlating with the ability of atALKBH9B to interact (or not) with their coat proteins. Suppression of atALKBH9B increased the relative abundance of m6A in the AMV genome, impairing the systemic invasion of the plant, while not having any effect on CMV infection. Our findings suggest that, as recently found in animal viruses, m6A modification may represent a plant regulatory strategy to control cytoplasmic-replicating RNA viruses.
Molecular Plant Pathology | 2014
Ana Peiró; Ana Cristina Izquierdo‐Garcia; J. A. Sánchez-Navarro; Vicente Pallás; José Mulet; Frederic Aparicio
Movement proteins (MPs) encoded by plant viruses interact with host proteins to facilitate or interfere with intra- and/or intercellular viral movement. Using yeast two-hybrid and bimolecular fluorescence complementation assays, we herein present in vivo evidence for the interaction between Alfalfa mosaic virus (AMV) MP and Arabidopsis Patellin 3 (atPATL3) and Patellin 6 (atPATL6), two proteins containing a Sec14 domain. Proteins with Sec14 domains are implicated in membrane trafficking, cytoskeleton dynamics, lipid metabolism and lipid-mediated regulatory functions. Interestingly, the overexpression of atPATL3 and/or atPATL6 interfered with the plasmodesmata targeting of AMV MP and correlated with reduced infection foci size. Consistently, the viral RNA levels increased in the single and double Arabidopsis knockout mutants for atPATL3 and atPATL6. Our results indicate that, in general, MP-PATL interactions interfere with the correct subcellular targeting of MP, thus rendering the intracellular transport of viral MP-containing complexes less efficient and diminishing cell-to-cell movement.
Virology | 2003
Frederic Aparicio; Marçal Vilar; Enrique Pérez-Payá; Vicente Pallás
Journal of Virological Methods | 2005
M. Carmen Herranz; J. A. Sánchez-Navarro; Frederic Aparicio; Vicente Pallás