Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédéric Berthiaume is active.

Publication


Featured researches published by Frédéric Berthiaume.


Applied and Environmental Microbiology | 2005

Waterborne Pathogen Detection by Use of Oligonucleotide-Based Microarrays

Christine Maynard; Frédéric Berthiaume; Karine Lemarchand; Josée Harel; Pierre Payment; Paul Bayardelle; Luke Masson; Roland Brousseau

ABSTRACT A small-oligonucleotide microarray prototype was designed with probes specific for the universal 16S rRNA and cpn60 genes of several pathogens that are usually encountered in wastewaters. In addition to these two targets, wecE-specific oligonucleotide probes were included in the microarray to enhance its discriminating power within the Enterobacteriaceae family. Universal PCR primers were used to amplify variable regions of 16S rRNA, cpn60, and wecE genes directly in Escherichia coli and Salmonella enterica serovar Typhimurium genomic DNA mixtures (binary); E. coli, S. enterica serovar Typhimurium, and Yersinia enterocolitica genomic DNA mixtures (ternary); or wastewater total DNA. Amplified products were fluorescently labeled and hybridized on the prototype chip. The detection sensitivity for S. enterica serovar Typhimurium was estimated to be on the order of 0.1% (104S. enterica genomes) of the total DNA for the combination of PCR followed by microarray hybridization. The sensitivity of the prototype could be increased by hybridizing amplicons generated by PCR targeting genes specific for a bacterial subgroup, such as wecE genes, instead of universal taxonomic amplicons. However, there was evidence of PCR bias affecting the detection limits of a given pathogen as increasing amounts of a different pathogen were spiked into the test samples. These results demonstrate the feasibility of using DNA microarrays in the detection of waterborne pathogens within mixed populations but also raise the problem of PCR bias in such experiments.


Journal of Bacteriology | 2007

O-Linked Glycosylation Ensures the Normal Conformation of the Autotransporter Adhesin Involved in Diffuse Adherence

Marie-Ève Charbonneau; Victoria Girard; Anastasia Nikolakakis; Manuel Campos; Frédéric Berthiaume; François Lépine; Michael Mourez

The Escherichia coli adhesin involved in diffuse adherence (AIDA-I) is one of the few glycosylated proteins found in Escherichia coli. Glycosylation is mediated by a specific heptosyltransferase encoded by the aah gene, but little is known about the role of this modification and the mechanism involved. In this study, we identified several peptides of AIDA-I modified by the addition of heptoses by use of mass spectrometry and N-terminal sequencing of proteolytic fragments of AIDA-I. One threonine and 15 serine residues were identified as bearing heptoses, thus demonstrating for the first time that AIDA-I is O-glycosylated. We observed that unglycosylated AIDA-I is expressed in smaller amounts than its glycosylated counterpart and shows extensive signs of degradation upon heat extraction. We also observed that unglycosylated AIDA-I is more sensitive to proteases and induces important extracytoplasmic stress. Lastly, as was previously shown, we noted that glycosylation is required for AIDA-I to mediate adhesion to cultured epithelial cells, but purified mature AIDA-I fused to GST was found to bind in vitro to cells whether or not it was glycosylated. Taken together, our results suggest that glycosylation is required to ensure a normal conformation of AIDA-I and may be only indirectly necessary for its cell-binding function.


Journal of Bacteriology | 2006

Proteolytic processing is not essential for multiple functions of the Escherichia coli autotransporter adhesin involved in diffuse adherence (AIDA-I).

Marie-Ève Charbonneau; Frédéric Berthiaume; Michael Mourez

The Escherichia coli adhesin involved in diffuse adherence (AIDA-I), like many other autotransporter proteins, is released in the periplasm as a proprotein undergoing proteolytic processing after its translocation across the outer membrane. The proprotein is cleaved into a membrane-embedded fragment, AIDAc, and an extracellular fragment, the mature AIDA-I adhesin. The latter remains noncovalently associated with the outer membrane and can be released by heat treatment. The mechanism of cleavage of the proprotein and its role in the functionality of AIDA-I are not understood. Here, we show that cleavage is independent of the amount of AIDA-I in the outer membrane, suggesting an intramolecular autoproteolytic mechanism or a cleavage mediated by an unknown protease. We show that the two fragments, mature AIDA-I and AIDAc, can be cosolubilized and copurified in a folded and active conformation. We observed that the release by heat treatment results from the unfolding of AIDA-I and that the interaction of AIDA-I with AIDAc seems to be disturbed only by denaturation. We constructed an uncleavable point mutant of AIDA-I, where a serine of the cleavage site was changed into a leucine, and showed that adhesion, autoaggregation, and biofilm formation mediated by the mutant are indistinguishable from the wild-type levels. Lastly, we show that both proteins can mediate the invasion of cultured epithelial cells. Taken together, our experiments suggest that the proteolytic processing of AIDA-I plays a minor role in the functionality of this protein.


Journal of Bacteriology | 2006

The Periplasmic Folding of a Cysteineless Autotransporter Passenger Domain Interferes with Its Outer Membrane Translocation

Nancy Rutherford; Marie-Ève Charbonneau; Frédéric Berthiaume; Jean-Michel Betton; Michael Mourez

Autotransporters are single polypeptides consisting of an outer membrane translocation domain mediating the translocation of a passenger domain. The periplasmic folding state of the passenger domain is controversial. By comparisons of passenger domains differing in their folding properties, our results suggest that periplasmic folding of passenger domains interferes with translocation.


Journal of Biological Chemistry | 2010

Conformation Change in a Self-recognizing Autotransporter Modulates Bacterial Cell-Cell Interaction

Victoria Girard; Jean-Philippe Côté; Marie-Ève Charbonneau; Manuel Campos; Frédéric Berthiaume; Mark A. Hancock; Nadeem Siddiqui; Michael Mourez

Bacteria mostly live as multicellular communities, although they are unicellular organisms, yet the mechanisms that tie individual bacteria together are often poorly understood. The adhesin involved in diffuse adherence (AIDA-I) is an adhesin of diarrheagenic Escherichia coli strains. AIDA-I also mediates bacterial auto-aggregation and biofilm formation and thus could be important for the organization of communities of pathogens. Using purified protein and whole bacteria, we provide direct evidence that AIDA-I promotes auto-aggregation by interacting with itself. Using various biophysical and biochemical techniques, we observed a conformational change in the protein during AIDA-AIDA interactions, strengthening the notion that this is a highly specific interaction. The self-association of AIDA-I is of high affinity but can be modulated by sodium chloride. We observe that a bile salt, sodium deoxycholate, also prevents AIDA-I oligomerization and bacterial auto-aggregation. Thus, we propose that AIDA-I, and most likely other similar autotransporters such as antigen 43 (Ag43) and TibA, organize bacterial communities of pathogens through a self-recognition mechanism that is sensitive to the environment. This could permit bacteria to switch between multicellular and unicellular lifestyles to complete their infection.


Molecular Microbiology | 2012

A structural motif is the recognition site for a new family of bacterial protein O‐glycosyltransferases

Marie Ève Charbonneau; Jean Côté; M. Florencia Haurat; Bela Reiz; Sébastien Crépin; Frédéric Berthiaume; Charles M. Dozois; Mario F. Feldman; Michael Mourez

The Escherichia coli Adhesin Involved in Diffuse Adherence (AIDA‐I) is a multifunctional protein that belongs to the family of monomeric autotransporters. This adhesin can be glycosylated by the AIDA‐associated heptosyltransferase (Aah). Glycosylation appears to be restricted to the extracellular domain of AIDA‐I, which comprises imperfect repeats of a 19‐amino‐acid consensus sequence and is predicted to form a β‐helix. Here, we show that Aah homologues can be found in many Gram‐negative bacteria, including Citrobacter rodentium. We demonstrated that an AIDA‐like protein is glycosylated in this species by the Aah homologue. We then investigated the substrate recognition mechanism of the E. coli Aah heptosyltransferase. We found that a peptide corresponding to one repeat of the 19‐amino‐acid consensus is sufficient for recognition and glycosylation by Aah. Mutagenesis studies suggested that, unexpectedly, Aah recognizes a structural motif typical of β‐helices, but not a specific sequence. In agreement with this finding, we observed that the extracellular domain of the Bordetella pertussis pertactin, a β‐helical polypeptide lacking the 19‐amino‐acid consensus sequence, could be glycosylated by Aah. Overall, our findings suggest that Aah represents the prototype of a new large family of bacterial protein O‐glycosyltransferases that modify various substrates recognized through a structural motif.


PLOS ONE | 2010

Molecular composition of staufen2-containing ribonucleoproteins in embryonic rat brain.

Marjolaine Maher-Laporte; Frédéric Berthiaume; Mireille Moreau; Louis-André Julien; Gabriel Lapointe; Michael Mourez

Messenger ribonucleoprotein particles (mRNPs) are used to transport mRNAs along neuronal dendrites to their site of translation. Numerous mRNA-binding and regulatory proteins within mRNPs finely regulate the fate of bound-mRNAs. Their specific combination defines different types of mRNPs that in turn are related to specific synaptic functions. One of these mRNA-binding proteins, Staufen2 (Stau2), was shown to transport dendritic mRNAs along microtubules. Its knockdown expression in neurons was shown to change spine morphology and synaptic functions. To further understand the molecular mechanisms by which Stau2 modulates synaptic function in neurons, it is important to identify and characterize protein co-factors that regulate the fate of Stau2-containing mRNPs. To this end, a proteomic approach was used to identify co-immunoprecipitated proteins in Staufen2-containing mRNPs isolated from embryonic rat brains. The proteomic approach identified mRNA-binding proteins (PABPC1, hnRNP H1, YB1 and hsc70), proteins of the cytoskeleton (α- and β-tubulin) and RUFY3 a poorly characterized protein. While PABPC1 and YB1 associate with Stau2-containing mRNPs through RNAs, hsc70 is directly bound to Stau2 and this interaction is regulated by ATP. PABPC1 and YB1 proteins formed puncta in dendrites of embryonic rat hippocampal neurons. However, they poorly co-localized with Stau2 in the large dendritic complexes suggesting that they are rather components of Stau2-containing mRNA particles. All together, these results represent a further step in the characterization of Stau2-containing mRNPs in neurons and provide new tools to study and understand how Stau2-containing mRNPs are transported, translationally silenced during transport and/or locally expressed according to cell needs.


Journal of Bacteriology | 2004

Influence of l-Leucine and l-Alanine on Lrp Regulation of foo, Coding for F1651, a Pap Homologue

Frédéric Berthiaume; Cécile Crost; Vincent Labrie; Christine Martin; Elaine B. Newman; Josée Harel

The foo operon encodes F165 1 fimbriae that belong to the P-regulatory family and are synthesized by septicemic Escherichia coli. Using an Lrp-deficient host and the lrp gene cloned under the arabinose pBAD promoter, we demonstrated that foo was transcribed proportionally to the amount of Lrp synthesized. L-leucine and L-alanine decreased drastically the steady-state transcription of foo and modified phase variation, independently of the presence of FooI. Specific mutations in the C-terminal region of Lrp reduced or abolished the repressive effect of these amino acids, indicating that they modulate F165 1 by affecting Lrp.


Fems Microbiology Letters | 2010

Growth‐phase‐dependent expression of the operon coding for the glycosylated autotransporter adhesin AIDA‐I of pathogenic Escherichia coli

Frédéric Berthiaume; Marie-Florence Leblond; Josée Harel; Michael Mourez

The adhesin involved in diffuse adherence (AIDA-I) is an autotransporter found in pathogenic strains of Escherichia coli causing diarrhea in humans and pigs. The AIDA-I protein is glycosylated by a specific enzyme, the AIDA-associated heptosyltransferase (Aah). The aah gene is immediately upstream of the aidA gene, suggesting that they form an operon. However, the mechanisms of regulation of the aah and aidA genes are unknown. Using a clinical E. coli isolate expressing AIDA-I, we identified two putative promoters 149 and 128 nucleotides upstream of aah. Using qRT-PCR, we observed that aah and aidA are transcribed in a growth-dependent fashion, mainly at the start of the stationary phase. Western blotting confirmed that protein expression follows the same pattern. Using a fusion to a reporter gene, we observed that the regulation of the isolated aah promoter matched this transcription and expression pattern. Lastly, we found glucose to be a repressor and nutrient starvation to be an inducer. Taken together, our results suggest that, in the strain and the conditions we studied, aah-aidA is transcribed as a bicistronic message from a promoter upstream of aah, with maximal expression under conditions of nutrient limitation such as high cell density.


Applied and Environmental Microbiology | 2012

Identification and mechanism of evolution of new alleles coding for the AIDA-I autotransporter of porcine pathogenic Escherichia coli.

Jean-Philippe Côté; Frédéric Berthiaume; Sébastien Houle; John M. Fairbrother; Charles M. Dozois; Michael Mourez

ABSTRACT Autotransporters are a large family of virulence factors of Gram-negative bacterial pathogens. The autotransporter adhesin involved in diffuse adherence (AIDA-I) is an outer membrane protein of Escherichia coli, which allows binding to epithelial cells as well as the autoaggregation of bacteria. AIDA-I is glycosylated by a specific heptosyltransferase encoded by the aah gene that forms an operon with the aidA gene. aidA is highly prevalent in strains that cause disease in pigs. Nevertheless, there are only two published whole-length sequences for this gene. In this study, we sequenced the aah and aidA genes of 24 aidA-positive porcine strains harboring distinct virulence factor profiles. We compared the obtained sequences and performed phylogenetic and pulsed-field electrophoresis analyses. Our results suggest that there are at least 3 different alleles for aidA, which are associated with distinct virulence factor profiles. The genes are found on high-molecular-weight plasmids and seem to evolve via shuffling mechanisms, with one of the sequences showing evidence of genetic recombination. Our work suggests that genetic plasticity allows the evolution of aah-aidA alleles that are selected during pathogenesis.

Collaboration


Dive into the Frédéric Berthiaume's collaboration.

Top Co-Authors

Avatar

Michael Mourez

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Michael Mourez

Humboldt University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Josée Harel

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Charles M. Dozois

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Martin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Cécile Crost

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge