Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Josée Harel is active.

Publication


Featured researches published by Josée Harel.


Infection and Immunity | 2006

Adherent and invasive Escherichia coli is associated with granulomatous colitis in boxer dogs.

Kenneth W. Simpson; Belgin Dogan; Mark Rishniw; Richard E. Goldstein; Suzanne Klaessig; Patrick L. McDonough; Robin M. Yates; David G. Russell; Susan E. Johnson; Douglas E. Berg; Josée Harel; Guillaume Bruant; Sean P. McDonough; Y.H. Schukken

ABSTRACT The mucosa-associated microflora is increasingly considered to play a pivotal role in the pathogenesis of inflammatory bowel disease. This study explored the possibility that an abnormal mucosal flora is involved in the etiopathogenesis of granulomatous colitis of Boxer dogs (GCB). Colonic biopsy samples from affected dogs (n = 13) and controls (n = 38) were examined by fluorescent in situ hybridization (FISH) with a eubacterial 16S rRNA probe. Culture, 16S ribosomal DNA sequencing, and histochemistry were used to guide subsequent FISH. GCB-associated Escherichia coli isolates were evaluated for their ability to invade and persist in cultured epithelial cells and macrophages as well as for serotype, phylogenetic group, genome size, overall genotype, and presence of virulence genes. Intramucosal gram-negative coccobacilli were present in 100% of GCB samples but not controls. Invasive bacteria hybridized with FISH probes to E. coli. Three of four GCB-associated E. coli isolates adhered to, invaded, and replicated within cultured epithelial cells. Invasion triggered a“ splash”-type response, was decreased by cytochalasin D, genistein, colchicine, and wortmannin, and paralleled the behavior of the Crohns disease-associated strain E. coli LF 82. GCB E. coli and LF 82 were diverse in serotype and overall genotype but similar in phylogeny (B2 and D), in virulence gene profiles (fyuA, irp1, irp2, chuA, fepC, ibeA, kpsMII, iss), in having a larger genome size than commensal E. coli, and in the presence of novel multilocus sequence types. We conclude that GCB is associated with selective intramucosal colonization by E. coli. E. coli strains associated with GCB and Crohns disease have an adherent and invasive phenotype and novel multilocus sequence types and resemble E. coli associated with extraintestinal disease in phylogeny and virulence gene profile.


Antimicrobial Agents and Chemotherapy | 2003

Antimicrobial Resistance Genes in Enterotoxigenic Escherichia coli O149:K91 Isolates Obtained over a 23-Year Period from Pigs

Christine Maynard; John M. Fairbrother; Sadjia Bekal; François Sanschagrin; Roger C. Levesque; Roland Brousseau; Luke Masson; Serge Larivière; Josée Harel

ABSTRACT A total of 112 Escherichia coli O149:K91 strains isolated from pigs with diarrhea in Quebec, Canada, between 1978 and 2000 were characterized for their genotypic antimicrobial resistance profiles. Tests for resistance to 10 antimicrobial agents were conducted. Resistance to tetracycline and sulfonamides was found to be the most frequent, but resistance to cefotaxime and ceftiofur was absent. An increase in the number of isolates resistant to at least three antimicrobials was observed over time. The distribution of 28 resistance genes covering six antimicrobial families (beta-lactams, aminoglycosides, phenicols, tetracycline, trimethoprim, and sulfonamides) was assessed by colony hybridization. Significant differences in the distributions of tetracycline [tet(A), tet(B), tet(C)], trimethoprim (dhfrI, dhfrV, dhfrXIII), and sulfonamide (sulI, sulII) resistance genes were observed during the study period (1978 to 2000). Sixty percent of the isolates possessed a class 1 integron, illustrating the importance of integrons in the epidemiology of antibiotic resistance in E. coli strains from pigs. Amplification of the integrons variable region resulted in four distinct fragments of 1, 1.3, 1.6, and 1.8 kb, with the 1.6- and 1.8-kb fragments appearing only during the last half of the study period. Examination of linkages among the different resistance genes showed a variety of positive and negative associations. Association analysis of isolates divided into two groups, those isolated between 1978 and 1989 and those isolated between 1990 and 2000, revealed the appearance of new positive resistance gene associations. Our genotypic resistance analyses of ETEC isolates from pigs indicate that many of the antibiotic resistance genes behind phenotypic resistance are not static but, rather, are in a state of flux driven by various selection forces such as the use of specific antimicrobials.


Journal of Clinical Microbiology | 2003

Rapid Identification of Escherichia coli Pathotypes by Virulence Gene Detection with DNA Microarrays

Sadjia Bekal; Roland Brousseau; Luke Masson; Gabrielle Préfontaine; John M. Fairbrother; Josée Harel

ABSTRACT One approach to the accurate determination of the pathogenic potential (pathotype) of isolated Escherichia coli strains would be through a complete assessment of each strain for the presence of all known E. coli virulence factors. To accomplish this, an E. coli virulence factor DNA microarray composed of 105 DNA PCR amplicons printed on glass slides and arranged in eight subarrays corresponding to different E. coli pathotypes was developed. Fluorescently labeled genomic DNAs from E. coli strains representing known pathotypes were initially hybridized to the virulence gene microarrays for both chip optimization and validation. Hybridization pattern analysis with clinical isolates permitted a rapid assessment of their virulence attributes and determination of the pathogenic group to which they belonged. Virulence factors belonging to two different pathotypes were detected in one human E. coli isolate (strain H87-5406). The microarray was also tested for its ability to distinguish among phylogenetic groups of genes by using gene probes derived from the attaching-and-effacing locus (espA, espB, tir). After hybridization with these probes, we were able to distinguish E. coli strains harboring espA, espB, and tir sequences closely related to the gene sequences of an enterohemorrhagic strain (EDL933), a human enteropathogenic strain (E2348/69), or an animal enteropathogenic strain (RDEC-1). Our results show that the virulence factor microarray is a powerful tool for diagnosis-based studies and that the concept is useful for both gene quantitation and subtyping. Additionally, the multitude of virulence genes present on the microarray should greatly facilitate the detection of virulence genes acquired by horizontal transfer and the identification of emerging pathotypes.


Journal of Clinical Microbiology | 2004

Heterogeneity among Virulence and Antimicrobial Resistance Gene Profiles of Extraintestinal Escherichia coli Isolates of Animal and Human Origin

Christine Maynard; Sadjia Bekal; François Sanschagrin; Roger C. Levesque; Roland Brousseau; Luke Masson; Serge Larivière; Josée Harel

ABSTRACT Extraintestinal pathogenic Escherichia coli (ExPEC) isolates collected from different infected animals and from human patients with extraintestinal infections in 2001 were characterized for their phenotypic and genotypic antimicrobial resistance profiles, genotypes, and key virulence factors. Among the 10 antimicrobial agents tested, resistance to ampicillin, tetracycline, and sulfonamides was most frequent. Multiresistant strains were found in both the animal and the human groups of isolates. Resistance gene distribution was assessed by colony hybridization. Similar antibiotic resistance patterns could be observed in the animal and the human isolates. Although some resistance genes, such as blaTEM, sulI, and sulII, were equally represented in the animal and human ExPEC isolates, differences in the distributions of tetracycline [tet(D)], chloramphenicol (catI, catIII, and floR), and trimethoprim (dhfrI, dhfrV, dhfrVII, and dhfrXIII) resistance genes were observed between the animal and the human isolates. Approximately one-third of the ExPEC isolates possessed a class 1 integron. The four major different variable regions of the class 1 integron contained aminoglycoside (aadA1, aadA2, aadA5, and aadA6) and/or trimethoprim (dhfrIb, dhfrXII, and dhfrXVII) resistance genes. The ExPEC strains belonged to different phylogenetic groups, depending on their host origin. Strains isolated from animal tissues belonged to either a commensal group (group A or B1) or a virulent group (group B2 or D), while the majority of the human isolates belonged to a virulent group (group B2 or D). Although the limited number of isolates evaluated in the present study prevents firm epidemiological conclusions from being made, on a more global scale, these data demonstrate that extraintestinal isolates of E. coli can possess relatively distinct intra- and intergroup resistance gene profiles, with animal isolates presenting a more heterogeneous group than human isolates.


Microbiology | 1998

Streptococcus suis serotype 2 mutants deficient in capsular expression.

Nathalie Charland; Josée Harel; Marylène Kobisch; Serge Lacasse; Marcelo Gottschalk

Streptococcus suis serotype 2 is responsible for a wide variety of porcine infections. In addition, it is considered a zoonotic agent. Knowledge about the virulence factors for this bacterium is limited but its polysaccharide capsule is thought to be one of the most important. Transposon mutagenesis with the self-conjugative transposon Tn916 was used to obtain acapsular mutants from the virulent S. suis type 2 reference strain S735. Clones were screened by colony-dot ELISA with a monoclonal antibody specific for a type 2 capsular epitope and clones that failed to react with the antibody were characterized. Two mutants, 2A and 79, having one and two Tn916 insertions respectively, were chosen for further characterization. Absence of capsule was confirmed by coagglutination, capillary precipitation and capsular reaction tests and by transmission electron microscopy. Absence of capsular polysaccharides correlated with increased hydrophobicity and phagocytosis by both murine macrophages and porcine monocytes compared to the wild-type strain. Furthermore, both mutants were shown to be avirulent in murine and pig models of infection. Finally, mutant 2A was readily eliminated from circulation in mice compared to the wild-type strain, which persisted more than 48 h in blood. Thus, isogenic mutants defective in capsule production demonstrate the importance of capsular polysaccharides as a virulence factor for S. suis type 2.


Applied and Environmental Microbiology | 2007

Occurrence of Virulence and Antimicrobial Resistance Genes in Escherichia coli Isolates from Different Aquatic Ecosystems within the St. Clair River and Detroit River Areas

Katia Hamelin; Guillaume Bruant; Abdel El-Shaarawi; Stephen Hill; Thomas A. Edge; John M. Fairbrother; Josée Harel; Christine Maynard; Luke Masson; Roland Brousseau

ABSTRACT Although the number of Escherichia coli bacteria in surface waters can differ greatly between locations, relatively little is known about the distribution of E. coli pathotypes in surface waters used as sources for drinking or recreation. DNA microarray technology is a suitable tool for this type of study due to its ability to detect high numbers of virulence and antimicrobial resistance genes simultaneously. Pathotype, phylogenetic group, and antimicrobial resistance gene profiles were determined for 308 E. coli isolates from surface water samples collected from diverse aquatic ecosystems at six different sites in the St. Clair River and Detroit River areas. A higher frequency (48%) of E. coli isolates possessing virulence and antimicrobial resistance genes was observed in an urban site located downstream of wastewater effluent outfalls than in the other examined sites (average of 24%). Most E. coli pathotypes were extraintestinal pathogenic E. coli (ExPEC) pathotypes and belonged to phylogenetic groups B2 and D. The ExPEC pathotypes were found to occur across all aquatic ecosystems investigated, including riverine, estuarine, and offshore lake locations. The results of this environmental study using DNA microarrays highlight the widespread distribution of E. coli pathotypes in aquatic ecosystems and the potential public health threat of E. coli pathotypes originating from municipal wastewater sources.


Journal of Clinical Microbiology | 2006

Identification of Virulence Genes Linked with Diarrhea Due to Atypical Enteropathogenic Escherichia coli by DNA Microarray Analysis and PCR

Jan Egil Afset; Guillaume Bruant; Roland Brousseau; Josée Harel; Endre Anderssen; Lars Bevanger; Kåre Bergh

ABSTRACT The role of atypical enteropathogenic Escherichia coli (EPEC) in childhood diarrhea is controversial. The aim of the present study was to search for genes linked with diarrhea in atypical EPEC strains from a case-control study among Norwegian children. Using DNA microarray analysis, genomic DNAs from strains isolated from children with (n = 37) and without (n = 20) diarrhea were hybridized against 242 different oligonucleotide probes specific for 182 virulence genes or markers from all known E. coli pathotypes. PCR was performed to test the strains for seven putative virulence genes not included in the microarray panel. The OI-122 gene efa1/lifA was the gene with the strongest statistical association with diarrhea (P = 0.0008). Other OI-122 genes (set/ent, nleB, and nleE) and genes with other locations (lpfA, paa, ehxA, and ureD) were also associated with diarrheal disease. The phylogenetic marker gene yjaA was negatively associated with diarrhea (P = 0.0004). Atypical EPEC strains could be classified in two main virulence groups based on their content of OI-122, lpfA, and yjaA genes. Among children with diarrhea, atypical EPEC isolates belonging to virulence group I (OI-122 and lpfA positive, yjaA negative) were the most common, while the majority of isolates from healthy children were classified as virulence group II strains (OI-122 negative, lpfA and yjaA positive; P < 0.001). In conclusion, using DNA microarray analysis to determine the virulence gene profile of atypical EPEC isolates, several genes were found to be significantly associated with diarrhea. Based on their composition of virulence genes, the majority of strains could be classified in two virulence groups, of which one was seen mainly in children with diarrhea.


Infection and Immunity | 2003

Characterization of the Novel Factor Paa Involved in the Early Steps of the Adhesion Mechanism of Attaching and Effacing Escherichia coli

Isabelle Batisson; Marie-Pierre Guimond; Francis Girard; Hongyan An; Chengru Zhu; Eric Oswald; John M. Fairbrother; Mario Jacques; Josée Harel

ABSTRACT Nonenterotoxigenic porcine Escherichia coli strains belonging to the serogroup O45 have been associated with postweaning diarrhea in swine and adhere to intestinal epithelial cells in a characteristic attaching and effacing (A/E) pattern. O45 porcine enteropathogenic E. coli (PEPEC) strain 86-1390 induces typical A/E lesions in a pig ileal explant model. Using TnphoA transposon insertion mutagenesis on strain 86-1390, we found a mutant that did not induce A/E lesions. The insertion was identified in a gene designated paa (porcine A/E-associated gene). Sequence analysis of paa revealed an open reading frame of 753 bp encoding a 27.6-kDa protein which displayed 100, 51.8, and 49% homology with Paa of enterohemorrhagic E. coli O157:H7 strains (EDL933 and Sakai), PEB3 of Campylobacter jejuni, and AcfC of Vibrio cholerae, respectively. Chromosomal localization studies indicated that the region containing paa was inserted between the yciD and yciE genes at about 28.3 min of the E. coli K-12 chromosome. The presence of paa and eae sequences in the porcine O45 strains is highly correlated with the A/E phenotype. However, the observation that three eae-positive but paa-negative PEPEC O45 strains were A/E negative provides further evidence for the importance of the paa gene in the A/E activity of O45 strains. As well, the complementation of the paa mutant restored the A/E activity of the 86-1390 strain, showing the involvement of Paa in PEPEC pathogenicity. These observations suggest that Paa contributes to the early stages of A/E E. coli virulence.


Molecular Microbiology | 2008

Significant contribution of the pgdA gene to the virulence of Streptococcus suis

Nahuel Fittipaldi; Tsutomu Sekizaki; Daisuke Takamatsu; María de la Cruz Domínguez-Punaro; Josée Harel; Nhat Khai Bui; Waldemar Vollmer; Marcelo Gottschalk

Streptococcus suis is a major swine pathogen and emerging zoonotic agent. In this study we have determined the muropeptide composition of S. suis peptidoglycan (PG) and found, among other modifications, N‐deacetylated compounds. Comparison with an isogenic mutant showed that the product of the pgdA gene is responsible for this specific modification which occurred in very low amounts. Low level of PG N‐deacetylation correlated with absence of significant lysozyme resistance when wild‐type S. suis was grown in vitro. On the other hand, expression of the pgdA gene was increased upon interaction of the bacterium with neutrophils in vitro as well as in vivo in experimentally inoculated mice, suggesting that S. suis may enhance PG N‐deacetylation under these conditions. Evaluation of the ΔpgdA mutant in both the CD1 murine and the porcine models of infection revealed a significant contribution of the pgdA gene to the virulence traits of S. suis. Reflecting a severe impairment in its ability to persist in blood and decreased ability to escape immune clearance mechanisms mediated by neutrophils, the ΔpgdA mutant was highly attenuated in both models. The results of this study suggest that modification of PG by N‐deacetylation is an important factor in S. suis virulence.


Environmental Microbiology | 2011

Enterohaemorrhagic Escherichia coli gains a competitive advantage by using ethanolamine as a nitrogen source in the bovine intestinal content

Yolande Bertin; Jean-Pierre Girardeau; Frédérique Chaucheyras-Durand; Bernard Lyan; Estelle Pujos-Guillot; Josée Harel; Christine Martin

The bovine gastrointestinal tract is the main reservoir for enterohaemorrhagic Escherichia coli (EHEC) responsible for food-borne infections. Characterization of nutrients that promote the carriage of these pathogens by the ruminant would help to develop ecological strategies to reduce their survival in the bovine gastrointestinal tract. In this study, we show for the first time that free ethanolamine (EA) constitutes a nitrogen source for the O157:H7 EHEC strain EDL933 in the bovine intestinal content because of induction of the eut (ethanolamine utilization) gene cluster. In contrast, the eut gene cluster is absent in the genome of most species constituting the mammalian gut microbiota. Furthermore, the eutB gene (encoding a subunit of the enzyme that catalyses the release of ammonia from EA) is poorly expressed in non-pathogenic E. coli. Accordingly, EA is consumed by EHEC but is poorly metabolized by endogenous microbiota of the bovine small intestine, including commensal E. coli. Interestingly, the capacity to utilize EA as a nitrogen source confers a growth advantage to E. coli O157:H7 when the bacteria enter the stationary growth phase. These data demonstrate that EHEC strains take advantage of a nitrogen source that is not consumed by the resident microbiota, and suggest that EA represents an ecological niche favouring EHEC persistence in the bovine intestine.

Collaboration


Dive into the Josée Harel's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mario Jacques

Université de Montréal

View shared research outputs
Top Co-Authors

Avatar

Charles M. Dozois

Institut national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Luke Masson

National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine Martin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge