Frédéric Biaso
Aix-Marseille University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frédéric Biaso.
Scientific Reports | 2016
Sona Garajova; Yann Mathieu; Maria Rosa Beccia; Chloé Bennati-Granier; Frédéric Biaso; Mathieu Fanuel; David Ropartz; Bruno Guigliarelli; Eric Record; Hélène Rogniaux; Bernard Henrissat; Jean-Guy Berrin
The enzymatic conversion of plant biomass has been recently revolutionized by the discovery of lytic polysaccharide monooxygenases (LPMOs) that carry out oxidative cleavage of polysaccharides. These very powerful enzymes are abundant in fungal saprotrophs. LPMOs require activation by electrons that can be provided by cellobiose dehydrogenases (CDHs), but as some fungi lack CDH-encoding genes, other recycling enzymes must exist. We investigated the ability of AA3_2 flavoenzymes secreted under lignocellulolytic conditions to trigger oxidative cellulose degradation by AA9 LPMOs. Among the flavoenzymes tested, we show that glucose dehydrogenase and aryl-alcohol quinone oxidoreductases are catalytically efficient electron donors for LPMOs. These single-domain flavoenzymes display redox potentials compatible with electron transfer between partners. Our findings extend the array of enzymes which regulate the oxidative degradation of cellulose by lignocellulolytic fungi.
BMC Biochemistry | 2013
Monique Sabaty; Sandrine Grosse; Géraldine Adryanczyk; Séverine Boiry; Frédéric Biaso; Pascal Arnoux
BackgroundYedY, a molybdoenzyme belonging to the sulfite oxidase family, is found in most Gram-negative bacteria. It contains a twin-arginine signal sequence that is cleaved after its translocation into the periplasm. Despite a weak reductase activity with substrates such as dimethyl sulfoxide or trimethylamine N-oxide, its natural substrate and its role in the cell remain unknown. Although sequence conservation of the YedY family displays a strictly conserved hydrophobic C-terminal residue, all known studies on Escherichia coli YedY have been performed with an enzyme containing a 6 histidine-tag at the C-terminus which could hamper enzyme activity.ResultsIn this study, we demonstrate that the tag fused to the C-terminus of Rhodobacter sphaeroides YedY is detrimental to the enzyme’s reductase activity and results in an eight-fold decrease in catalytic efficiency. Nonetheless this C-terminal tag does not influence the properties of the molybdenum active site, as assayed by EPR spectroscopy. When a cleavable His-tag was fused to the N-terminus of the mature enzyme in the absence of the signal sequence, YedY was expressed and folded with its cofactor. However, when the signal sequence was added upstream of the N-ter tag, the amount of enzyme produced was approximately ten-fold higher.ConclusionOur study thus underscores the risk of using a C-terminus tagged enzyme while studying YedY, and presents an alternative strategy to express signal sequence-containing enzymes with an N-terminal tag. It brings new insights into molybdoenzyme maturation in R. sphaeroides showing that for some enzymes, maturation can occur in the absence of the signal sequence but that its presence is required for high expression of active enzyme.
PLOS ONE | 2014
Magali Roger; Frédéric Biaso; Cindy J. Castelle; Marielle Bauzan; Florence Chaspoul; Elisabeth Lojou; Giuliano Sciara; Stefano Caffarri; Marie-Thérèse Giudici-Orticoni; Marianne Ilbert
Cupredoxins are widespread copper-binding proteins, mainly involved in electron transfer pathways. They display a typical rigid greek key motif consisting of an eight stranded β-sandwich. A fascinating feature of cupredoxins is the natural diversity of their copper center geometry. These geometry variations give rise to drastic changes in their color, such as blue, green, red or purple. Based on several spectroscopic and structural analyses, a connection between the geometry of their copper-binding site and their color has been proposed. However, little is known about the relationship between such diversity of copper center geometry in cupredoxins and possible implications for function. This has been difficult to assess, as only a few naturally occurring green and red copper sites have been described so far. We report herein the spectrocopic characterization of a novel kind of single domain cupredoxin of green color, involved in a respiratory pathway of the acidophilic organism Acidithiobacillus ferrooxidans. Biochemical and spectroscopic characterization coupled to bioinformatics analysis reveal the existence of some unusual features for this novel member of the green cupredoxin sub-family. This protein has the highest redox potential reported to date for a green-type cupredoxin. It has a constrained green copper site insensitive to pH or temperature variations. It is a green-type cupredoxin found for the first time in a respiratory pathway. These unique properties might be explained by a region of unknown function never found in other cupredoxins, and by an unusual length of the loop between the second and the fourth copper ligands. These discoveries will impact our knowledge on non-engineered green copper sites, whose involvement in respiratory chains seems more widespread than initially thought.
Inorganic Chemistry | 2017
Alda Lisa Concia; Maria Rosa Beccia; Maylis Orio; Francine Terra Ferre; Marciela Scarpellini; Frédéric Biaso; Bruno Guigliarelli; Marius Réglier; A. Jalila Simaan
We report here two copper complexes as first functional models for lytic polysaccharide monooxygenases, mononuclear copper-containing enzymes involved in recalcitrant polysaccharide breakdown. These complexes feature structural and spectroscopic properties similar to those of the enzyme. In addition, they catalyze oxidative cleavage of the model substrate p-nitrophenyl-β-d-glucopyranoside. More importantly, a particularly stable copper(II) hydroperoxide intermediate is detected in the reaction conditions.
ChemPhysChem | 2017
Maryam Seif Eddine; Frédéric Biaso; Rodrigo Arias-Cartin; Eric Pilet; Julia Rendon; Sevdalina Lyubenova; Farida Seduk; Bruno Guigliarelli; Axel Magalon; Stephane Grimaldi
In vivo specific isotope labeling at the residue or substituent level is used to probe menasemiquinone (MSK) binding to the quinol oxidation site of respiratory nitrate reductase A (NarGHI) from E. coli. 15 N selective labeling of His15 Nδ or Lys15 Nζ in combination with hyperfine sublevel correlation (HYSCORE) spectroscopy unambiguously identified His15 Nδ as the direct hydrogen-bond donor to the radical. In contrast, an essentially anisotropic coupling to Lys15 Nζ consistent with a through-space magnetic interaction was resolved. This suggests that MSK does not form a hydrogen bond with the side chain of the nearby Lys86 residue. In addition, selective 2 H labeling of the menaquinone methyl ring substituent allows unambiguous characterization of the 2 H-and hence of the 1 H-methyl isotropic hyperfine coupling by 2 H HYSCORE. DFT calculations show that a simple molecular model consisting of an imidazole Nδ atom in a hydrogen-bond interaction with a MSK radical anion satisfactorily accounts for the available spectroscopic data. These results support our previously proposed one-sided binding model for MSK to NarGHI through a single short hydrogen bond to the Nδ of His66, one of the distal heme axial ligands. This work establishes the basis for future investigations aimed at determining the functional relevance of this peculiar binding mode.
Biochimica et Biophysica Acta | 2017
Magali Roger; Giuliano Sciara; Frédéric Biaso; Elisabeth Lojou; Xie Wang; Marielle Bauzan; Marie-Thérèse Giudici-Orticoni; Alejandro J. Vila; Marianne Ilbert
Mononuclear cupredoxins contain a type 1 copper center with a trigonal or tetragonal geometry usually maintained by four ligands, a cystein, two histidines and a methionine. The recent discovery of new members of this family with unusual properties demonstrates, however, the versatility of this class of proteins. Changes in their ligand set lead to drastic variation in their metal site geometry and in the resulting spectroscopic and redox features. In our work, we report the identification of the copper ligands in the recently discovered cupredoxin AcoP. We show that even though AcoP possesses a classical copper ligand set, it has a highly perturbed copper center. In depth studies of mutants properties suggest a high degree of constraint existing in the copper center of the wild type protein and even the addition of exogenous ligands does not lead to the reconstitution of the initial copper center. Not only the chemical nature of the axial ligand but also constraints brought by its covalent binding to the protein backbone might be critical to maintain a green copper site with high redox potential. This work illustrates the importance of experimentally dissecting the molecular diversity of cupredoxins to determine the molecular determinants responsible for their copper center geometry and redox potential.
Archive | 2016
Stéphane Grimaldi; Frédéric Biaso; Bénédicte Burlat; Bruno Guigliarelli
Electron Paramagnetic Resonance (EPR) is certainly the first and the most widely used spectroscopic technique for studying structure and function of Mo and W enzymes. Although only Mo(v) and W(v) states can be detected, a considerable wealth of data was provided since the seminal EPR works performed on xanthine oxidase and nitrate reductase more than 55 years ago. In this chapter, we give a comprehensive overview of the various applications of EPR on the ubiquitous Mo-enzymes, which exhibit such an extraordinary diversity of substrates and catalyzed reactions. Elucidating the nature of Mo(v) intermediates is a considerable challenge to progress in understanding these processes. The g-tensor analyses are helpful in that aim. But it is essentially thanks to the advances in pulsed EPR methods like ENDOR, ESEEM and HYSCORE, combined with efficient isotopic enrichment strategies, that the measurements of hyperfine couplings of Mo-cofactor with neighbouring magnetic nuclei have brought the most interesting data. Thus, we illustrate how the analysis of hyperfine parameters associated with computational chemistry methods is becoming a powerful way to provide high-resolution structural data on Mo(v) species and enzyme mechanisms. In addition, EPR study of spin–spin couplings between Mo-cofactor and other paramagnetic centres appears as a promising way to gain long-range structural data in these systems.
Chemical Science | 2018
Xie Wang; M. Roger; R. Clément; S. Lecomte; Frédéric Biaso; L. A. Abriata; P. Mansuelle; I. Mazurenko; Marie-Thérèse Giudici-Orticoni; Elisabeth Lojou; Marianne Ilbert
Electrochemical studies of diheme cytochrome/cupredoxin complexes provide new insights into the electron transfer pathway in an acidophilic bacterium.
Inorganic Chemistry | 2017
Julia Rendon; Frédéric Biaso; Pierre Ceccaldi; René Toci; Farida Seduk; Axel Magalon; Bruno Guigliarelli; Stéphane Grimaldi
Respiratory nitrate reductases (Nars), members of the prokaryotic Mo/W-bis Pyranopterin Guanosine dinucleotide (Mo/W-bisPGD) enzyme superfamily, are key players in nitrate respiration, a major bioenergetic pathway widely used by microorganisms to cope with the absence of dioxygen. The two-electron reduction of nitrate to nitrite takes place at their active site, where the molybdenum ion cycles between Mo(VI) and Mo(IV) states via a Mo(V) intermediate. The active site shows two distinct pH-dependent Mo(V) electron paramagnetic resonance (EPR) signals whose structure and catalytic relevance have long been debated. In this study, we use EPR and HYSCORE techniques to probe their nuclear environment in Escherichia coli Nar (EcNar). By using samples prepared at different pH and through different enrichment strategies in 98Mo and 15N nuclei, we demonstrate that each of the two Mo(V) species is coupled to a single nitrogen nucleus with similar quadrupole characteristics. Structure-based density functional theory calculations allow us to propose a molecular model of the low-pH Mo(V) species consistent with EPR spectroscopic data. Our results show that the metal ion is coordinated by a monodentate aspartate ligand and permit the assignment of the coupled nitrogen nuclei to the Nδ of Asn52, a residue located ∼3.9 Å to the Mo atom in the crystal structures. This is confirmed by measurements on selectively 15N-Asn labeled EcNar. Further, we propose a Mo-O(H)···HN structure to account for the transfer of spin density onto the interacting nitrogen nucleus deduced from HYSCORE analysis. This work provides a foundation for monitoring the structure of the molybdenum active site in the presence of various substrates or inhibitors in Nars and other molybdenum enzymes.
Inorganic Chemistry | 2012
Frédéric Biaso; Bénédicte Burlat; Bruno Guigliarelli