Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédéric Chevessier is active.

Publication


Featured researches published by Frédéric Chevessier.


American Journal of Human Genetics | 2009

Identification of an Agrin Mutation that Causes Congenital Myasthenia and Affects Synapse Function

Caroline Huzé; Stéphanie Bauché; Pascale Richard; Frédéric Chevessier; Evelyne Goillot; Karen Gaudon; Asma Ben Ammar; Annie Chaboud; Isabelle Grosjean; Heba-Aude Lecuyer; Véronique Bernard; Andrée Rouche; Nektaria Alexandri; Thierry Kuntzer; Michel Fardeau; Emmanuel Fournier; Andrea Brancaccio; Markus A. Rüegg; Jeanine Koenig; Bruno Eymard; Laurent Schaeffer; Daniel Hantaï

We report the case of a congenital myasthenic syndrome due to a mutation in AGRN, the gene encoding agrin, an extracellular matrix molecule released by the nerve and critical for formation of the neuromuscular junction. Gene analysis identified a homozygous missense mutation, c.5125G>C, leading to the p.Gly1709Arg variant. The muscle-biopsy specimen showed a major disorganization of the neuromuscular junction, including changes in the nerve-terminal cytoskeleton and fragmentation of the synaptic gutters. Experiments performed in nonmuscle cells or in cultured C2C12 myotubes and using recombinant mini-agrin for the mutated and the wild-type forms showed that the mutated form did not impair the activation of MuSK or change the total number of induced acetylcholine receptor aggregates. A solid-phase assay using the dystrophin glycoprotein complex showed that the mutation did not affect the binding of agrin to alpha-dystroglycan. Injection of wild-type or mutated agrin into rat soleus muscle induced the formation of nonsynaptic acetylcholine receptor clusters, but the mutant protein specifically destabilized the endogenous neuromuscular junctions. Importantly, the changes observed in rat muscle injected with mutant agrin recapitulated the pre- and post-synaptic modifications observed in the patient. These results indicate that the mutation does not interfere with the ability of agrin to induce postsynaptic structures but that it dramatically perturbs the maintenance of the neuromuscular junction.


American Journal of Human Genetics | 2013

Constitutive Activation of the Calcium Sensor STIM1 Causes Tubular-Aggregate Myopathy

Johann Böhm; Frédéric Chevessier; André Maues de Paula; Catherine Koch; Shahram Attarian; Claire Feger; Daniel Hantaï; P. Laforêt; Karima Ghorab; Jean-Michel Vallat; Michel Fardeau; Dominique Figarella-Branger; Jean Pouget; Norma B. Romero; Marc Koch; Claudine Ebel; Nicolas Lévy; Martin Krahn; Bruno Eymard; Marc Bartoli; Jocelyn Laporte

Tubular aggregates are regular arrays of membrane tubules accumulating in muscle with age. They are found as secondary features in several muscle disorders, including alcohol- and drug-induced myopathies, exercise-induced cramps, and inherited myasthenia, but also exist as a pure genetic form characterized by slowly progressive muscle weakness. We identified dominant STIM1 mutations as a genetic cause of tubular-aggregate myopathy (TAM). Stromal interaction molecule 1 (STIM1) is the main Ca(2+) sensor in the endoplasmic reticulum, and all mutations were found in the highly conserved intraluminal Ca(2+)-binding EF hands. Ca(2+) stores are refilled through a process called store-operated Ca(2+) entry (SOCE). Upon Ca(2+)-store depletion, wild-type STIM1 oligomerizes and thereby triggers extracellular Ca(2+) entry. In contrast, the missense mutations found in our four TAM-affected families induced constitutive STIM1 clustering, indicating that Ca(2+) sensing was impaired. By monitoring the calcium response of TAM myoblasts to SOCE, we found a significantly higher basal Ca(2+) level in TAM cells and a dysregulation of intracellular Ca(2+) homeostasis. Because recessive STIM1 loss-of-function mutations were associated with immunodeficiency, we conclude that the tissue-specific impact of STIM1 loss or constitutive activation is different and that a tight regulation of STIM1-dependent SOCE is fundamental for normal skeletal-muscle structure and function.


Human Molecular Genetics | 2008

A mouse model for congenital myasthenic syndrome due to MuSK mutations reveals defects in structure and function of neuromuscular junctions

Frédéric Chevessier; Emmanuelle Girard; Jordi Molgó; Sönke Bartling; Jeanine Koenig; Daniel Hantaï; Veit Witzemann

In the muscle-specific tyrosine kinase receptor gene MUSK, a heteroallelic missense and a null mutation were identified in a patient suffering from a congenital myasthenic syndrome (CMS). We generated one mouse line carrying the homozygous missense mutation V789M in musk (musk(V789M/V789M) mice) and a second hemizygous line, resembling the patient genotype, with the V789M mutation on one allele and an allele lacking the kinase domain (musk(V789M/-) mice). We report here that musk(V789M/V789M) mice present no obvious abnormal phenotype regarding weight, muscle function and viability. In contrast, adult musk(V789M/-) mice suffer from severe muscle weakness, exhibit shrinkage of pelvic and scapular regions and hunchback. Musk(V789M/-) diaphragm develops less force upon direct or nerve-induced stimulation. A profound tetanic fade is observed following nerve-evoked muscle contraction, and fatigue resistance is severely impaired upon a train of tetanic nerve stimulations. Electrophysiological measurements indicate that fatigable muscle weakness is due to impaired neurotransmission as observed in a patient suffering from a CMS. The diaphragm of adult musk(V789M/-) mice exhibits pronounced changes in endplate architecture, distribution and innervation pattern. Thus, the missense mutation V789M in MuSK acts as a hypomorphic mutation and leads to insufficiency in MuSK function in musk(V789M/-) mutants. These mutant mice represent valuable models for elucidating the roles of MuSK for synapse formation, maturation and maintenance as well as for studying the pathophysiology of a CMS due to MuSK mutations.


Journal of Neurology, Neurosurgery, and Psychiatry | 2014

Hereditary myopathy with early respiratory failure: occurrence in various populations

Johanna Palmio; Anni Evilä; Françoise Chapon; Giorgio A. Tasca; Fengqing Xiang; Björn Brådvik; Bruno Eymard; Andoni Echaniz-Laguna; Jocelyn Laporte; Mikko Kärppä; Ibrahim Mahjneh; Rosaline Quinlivan; P. Laforêt; Maxwell S. Damian; Andres Berardo; Ana Lia Taratuto; Jose Antonio Bueri; Johanna Tommiska; Taneli Raivio; Matthias Tuerk; Philipp Gölitz; Frédéric Chevessier; Caroline Sewry; Fiona Norwood; Carola Hedberg; Rolf Schröder; Lars Edström; Anders Oldfors; Peter Hackman; Bjarne Udd

Objective Several families with characteristic features of hereditary myopathy with early respiratory failure (HMERF) have remained without genetic cause. This international study was initiated to clarify epidemiology and the genetic underlying cause in these families, and to characterise the phenotype in our large cohort. Methods DNA samples of all currently known families with HMERF without molecular genetic cause were obtained from 12 families in seven different countries. Clinical, histopathological and muscle imaging data were collected and five biopsy samples made available for further immunohistochemical studies. Genotyping, exome sequencing and Sanger sequencing were used to identify and confirm sequence variations. Results All patients with clinical diagnosis of HMERF were genetically solved by five different titin mutations identified. One mutation has been reported while four are novel, all located exclusively in the FN3 119 domain (A150) of A-band titin. One of the new mutations showed semirecessive inheritance pattern with subclinical myopathy in the heterozygous parents. Typical clinical features were respiratory failure at mid-adulthood in an ambulant patient with very variable degree of muscle weakness. Cytoplasmic bodies were retrospectively observed in all muscle biopsy samples and these were reactive for myofibrillar proteins but not for titin. Conclusions We report an extensive collection of families with HMERF with five different mutations in exon 343 of TTN, which establishes this exon as the primary target for molecular diagnosis of HMERF. Our relatively large number of new families and mutations directly implies that HMERF is not extremely rare, not restricted to Northern Europe and should be considered in undetermined myogenic respiratory failure.


Acta Neuropathologica | 2015

The toxic effect of R350P mutant desmin in striated muscle of man and mouse

Christoph S. Clemen; Florian Stöckigt; Karl-Heinz Strucksberg; Frédéric Chevessier; Lilli Winter; Johanna Schütz; Ralf Bauer; José-Manuel Thorweihe; Daniela Wenzel; Ursula Schlötzer-Schrehardt; Volker Rasche; Pavle Krsmanovic; Hugo A. Katus; Wolfgang Rottbauer; Steffen Just; Oliver J. Müller; Oliver Friedrich; Rainer Meyer; Harald Herrmann; Jan W. Schrickel; Rolf Schröder

Mutations of the human desmin gene on chromosome 2q35 cause autosomal dominant, autosomal recessive and sporadic forms of protein aggregation myopathies and cardiomyopathies. We generated R349P desmin knock-in mice, which harbor the ortholog of the most frequently occurring human desmin missense mutation R350P. These mice develop age-dependent desmin-positive protein aggregation pathology, skeletal muscle weakness, dilated cardiomyopathy, as well as cardiac arrhythmias and conduction defects. For the first time, we report the expression level and subcellular distribution of mutant versus wild-type desmin in our mouse model as well as in skeletal muscle specimens derived from human R350P desminopathies. Furthermore, we demonstrate that the missense-mutant desmin inflicts changes of the subcellular localization and turnover of desmin itself and of direct desmin-binding partners. Our findings unveil a novel principle of pathogenesis, in which not the presence of protein aggregates, but disruption of the extrasarcomeric intermediate filament network leads to increased mechanical vulnerability of muscle fibers. These structural defects elicited at the myofiber level finally impact the entire organ and subsequently cause myopathy and cardiomyopathy.


Journal of Medical Genetics | 2014

Clinical, histological and genetic characterisation of patients with tubular aggregate myopathy caused by mutations in STIM1

Johann Böhm; Frédéric Chevessier; Catherine Koch; G Arielle Peche; Marina Mora; Lucia Morandi; Barbara Pasanisi; Isabella Moroni; Giorgio Tasca; Fabiana Fattori; Enzo Ricci; Isabelle Pénisson-Besnier; Aleksandra Nadaj-Pakleza; Michel Fardeau; Pushpa Raj Joshi; Marcus Deschauer; Norma B. Romero; Bruno Eymard; Jocelyn Laporte

Background Tubular aggregate myopathies (TAMs) are muscle disorders characterised by abnormal accumulations of densely packed single-walled or double-walled membrane tubules in muscle fibres. Recently, STIM1, encoding a major calcium sensor of the endoplasmic reticulum, was identified as a TAM gene. Methods The present study aims to define the clinical, histological and ultrastructural phenotype of tubular aggregate myopathy and to assess the STIM1 mutation spectrum. Results We describe six new TAM families harbouring one known and four novel STIM1 mutations. All identified mutations are heterozygous missense mutations affecting highly conserved amino acids in the calcium-binding EF-hand domains, demonstrating the presence of a mutation hot spot for TAM. We show that the mutations induce constitutive STIM1 clustering, strongly suggesting that calcium sensing and consequently calcium homoeostasis is impaired. Histological and ultrastructural analyses define a common picture with tubular aggregates labelled with Gomori trichrome and Nicotinamide adenine dinucleotide (NADH) tetrazolium reductase, substantiating their endoplasmic reticulum origin. The aggregates were observed in both fibre types and were often accompanied by nuclear internalisation and fibre size variability. The phenotypical spectrum ranged from childhood onset progressive muscle weakness and elevated creatine kinase levels to adult-onset myalgia without muscle weakness and normal CK levels. Conclusions The present study expands the phenotypical spectrum of STIM1-related tubular aggregate myopathy. STIM1 should therefore be considered for patients with tubular aggregate myopathies involving either muscle weakness or myalgia as the first and predominant clinical sign.


Human Molecular Genetics | 2015

Myofibrillar instability exacerbated by acute exercise in filaminopathy

Frédéric Chevessier; Julia Schuld; Zacharias Orfanos; Anne-C. Plank; Lucie Wolf; A. Maerkens; Andreas Unger; Ursula Schlötzer-Schrehardt; Rudolf A. Kley; Stephan von Hörsten; Katrin Marcus; Wolfgang A. Linke; Matthias Vorgerd; Peter F.M. van der Ven; Dieter O. Fürst; Rolf Schröder

Filamin C (FLNC) mutations in humans cause myofibrillar myopathy (MFM) and cardiomyopathy, characterized by protein aggregation and myofibrillar degeneration. We generated the first patient-mimicking knock-in mouse harbouring the most common disease-causing filamin C mutation (p.W2710X). These heterozygous mice developed muscle weakness and myofibrillar instability, with formation of filamin C- and Xin-positive lesions streaming between Z-discs. These lesions, which are distinct from the classical MFM protein aggregates by their morphology and filamentous appearance, were greatly increased in number upon acute physical exercise in the mice. This pathology suggests that mutant filamin influences the mechanical stability of myofibrillar Z-discs, explaining the muscle weakness in mice and humans. Re-evaluation of biopsies from MFM-filaminopathy patients with different FLNC mutations revealed a similar, previously unreported lesion pathology, in addition to the classical protein aggregates, and suggested that structures previously interpreted as aggregates may be in part sarcomeric lesions. We postulate that these lesions define preclinical disease stages, preceding the formation of protein aggregates.


European Journal of Cell Biology | 2014

Severe protein aggregate myopathy in a knockout mouse model points to an essential role of cofilin2 in sarcomeric actin exchange and muscle maintenance.

Christine B. Gurniak; Frédéric Chevessier; Melanie Jokwitz; Friederike Jönsson; Emerald Perlas; Hendrik Richter; Gabi Matern; Pietro Pilo Boyl; Christine Chaponnier; Dieter O. Fürst; Rolf Schröder; Walter Witke

Mutations in the human actin depolymerizing factor cofilin2 result in an autosomal dominant form of nemaline myopathy. Here, we report on the targeted ablation of murine cofilin2, which leads to a severe skeletal muscle specific phenotype within the first two weeks after birth. Apart from skeletal muscle, cofilin2 is also expressed in heart and CNS, however the pathology was restricted to skeletal muscle. The two close family members of cofilin2 - ADF and cofilin1 - were co-expressed in muscle, but unable to compensate for the loss of cofilin2. While primary myofibril assembly and muscle development were unaffected in cofilin2 mutant mice, progressive muscle degeneration was observed between postnatal days 3 and 7. Muscle pathology was characterized by sarcoplasmic protein aggregates, fiber size disproportion, mitochondrial abnormalities and internal nuclei. The observed muscle pathology differed from nemaline myopathy, but showed combined features of actin-associated myopathy and myofibrillar myopathy. In cofilin2 mutant mice, the postnatal expression pattern and turnover of sarcomeric α-actin isoforms were altered. Levels of smooth muscle α-actin were increased and remained high in developing muscles, suggesting that cofilin2 plays a crucial role during the exchange of α-actin isoforms during the early postnatal remodeling of the sarcomere.


Acta Neuropathologica | 2016

Mutant desmin substantially perturbs mitochondrial morphology, function and maintenance in skeletal muscle tissue

Lilli Winter; Ilka Wittig; Viktoriya Peeva; Britta Eggers; Juliana Heidler; Frédéric Chevessier; Rudolf A. Kley; Katalin Barkovits; Valentina Strecker; Carolin Berwanger; Harald Herrmann; Katrin Marcus; Cornelia Kornblum; Wolfram S. Kunz; Rolf Schröder; Christoph S. Clemen

Secondary mitochondrial dysfunction is a feature in a wide variety of human protein aggregate diseases caused by mutations in different proteins, both in the central nervous system and in striated muscle. The functional relationship between the expression of a mutated protein and mitochondrial dysfunction is largely unknown. In particular, the mechanism how this dysfunction drives the disease process is still elusive. To address this issue for protein aggregate myopathies, we performed a comprehensive, multi-level analysis of mitochondrial pathology in skeletal muscles of human patients with mutations in the intermediate filament protein desmin and in muscles of hetero- and homozygous knock-in mice carrying the R349P desmin mutation. We demonstrate that the expression of mutant desmin causes disruption of the extrasarcomeric desmin cytoskeleton and extensive mitochondrial abnormalities regarding subcellular distribution, number and shape. At the molecular level, we uncovered changes in the abundancy and assembly of the respiratory chain complexes and supercomplexes. In addition, we revealed a marked reduction of mtDNA- and nuclear DNA-encoded mitochondrial proteins in parallel with large-scale deletions in mtDNA and reduced mtDNA copy numbers. Hence, our data demonstrate that the expression of mutant desmin causes multi-level damage of mitochondria already in early stages of desminopathies.


Biochemical and Biophysical Research Communications | 2015

VCP and PSMF1: Antagonistic regulators of proteasome activity

Christoph S. Clemen; Marija Marko; Karl-Heinz Strucksberg; Juliane Behrens; Ilka Wittig; Linda Gärtner; Lilli Winter; Frédéric Chevessier; Jan Matthias; Matthias Türk; Karthikeyan Tangavelou; Johanna Schütz; Khalid Arhzaouy; Karsten Klopffleisch; Franz-Georg Hanisch; Wolfgang Rottbauer; Ingmar Blümcke; Steffen Just; Ludwig Eichinger; Andreas Hofmann; Rolf Schröder

Protein turnover and quality control by the proteasome is of paramount importance for cell homeostasis. Dysfunction of the proteasome is associated with aging processes and human diseases such as neurodegeneration, cardiomyopathy, and cancer. The regulation, i.e. activation and inhibition of this fundamentally important protein degradation system, is still widely unexplored. We demonstrate here that the evolutionarily highly conserved type II triple-A ATPase VCP and the proteasome inhibitor PSMF1/PI31 interact directly, and antagonistically regulate proteasomal activity. Our data provide novel insights into the regulation of proteasomal activity.

Collaboration


Dive into the Frédéric Chevessier's collaboration.

Top Co-Authors

Avatar

Rolf Schröder

University of Erlangen-Nuremberg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johann Böhm

University of Strasbourg

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lilli Winter

Max F. Perutz Laboratories

View shared research outputs
Top Co-Authors

Avatar

Ilka Wittig

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge