Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédéric Delebecque is active.

Publication


Featured researches published by Frédéric Delebecque.


Nature | 2005

APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses

Cécile Esnault; Odile Heidmann; Frédéric Delebecque; Marie Dewannieux; David Ribet; Allan J. Hance; Thierry Heidmann; Olivier Schwartz

Endogenous retroviruses are multicopy retroelements accounting for nearly 10% of murine or human genomes. These retroelements spread into our ancestral genome millions of years ago and have acted as a driving force for genome evolution. Endogenous retroviruses may also be deleterious for their host, and have been implicated in cancers and autoimmune diseases. Most retroelements have lost replication competence because of the accumulation of inactivating mutations, but several, including some murine intracisternal A-particle (IAP) and MusD sequences, are still mobile. These elements encode a reverse transcriptase activity and move by retrotransposition, an intracellular copy-and-paste process involving an RNA intermediate. The host has developed mechanisms to silence their expression, mainly cosuppression and gene methylation. Here we identify another level of antiviral control, mediated by APOBEC3G, a member of the cytidine deaminase family that was previously shown to block HIV replication. We show that APOBEC3G markedly inhibits retrotransposition of IAP and MusD elements, and induces G-to-A hypermutations in their DNA copies. APOBEC3G, by editing viral genetic material, provides an ancestral wide cellular defence against endogenous and exogenous invaders.


Journal of Virology | 2006

Restriction of Foamy Viruses by APOBEC Cytidine Deaminases

Frédéric Delebecque; Rodolphe Suspène; Sara Calattini; Nicoletta Casartelli; Ali Saïb; Alain Froment; Simon Wain-Hobson; Antoine Gessain; Jean-Pierre Vartanian; Olivier Schwartz

ABSTRACT Foamy viruses (FVs) are nonpathogenic retroviruses infecting many species of mammals, notably primates, cattle, and cats. We have examined whether members of the apolipoprotein B-editing catalytic polypeptide-like subunit (APOBEC) family of antiviral cytidine deaminases restrict replication of simian FV. We show that human APOBEC3G is a potent inhibitor of FV infectivity in cell culture experiments. This antiviral activity is associated with cytidine editing of the viral genome. Both molecular FV clones and primary uncloned viruses were susceptible to APOBEC3G, and viral infectivity was also inhibited by murine and simian APOBEC3G homologues, as well as by human APOBEC3F. Wild-type and bet-deleted viruses were similarly sensitive to this antiviral activity, suggesting that Bet does not significantly counteract APOBEC proteins. Moreover, we did not detect FV sequences that may have been targeted by APOBEC in naturally infected macaques, but we observed a few G-to-A substitutions in humans that have been accidentally contaminated by simian FV. In infected hosts, the persistence strategy employed by FV might be based on low levels of replication, as well as avoidance of cells expressing large amounts of active cytidine deaminases.


Journal of Virology | 2004

A Single Injection of Recombinant Measles Virus Vaccines Expressing Human Immunodeficiency Virus (HIV) Type 1 Clade B Envelope Glycoproteins Induces Neutralizing Antibodies and Cellular Immune Responses to HIV

Clarisse Lorin; Lucile Mollet; Frédéric Delebecque; Chantal Combredet; Bruno Hurtrel; Pierre Charneau; Michel Brahic; Frédéric Tangy

ABSTRACT The anchored and secreted forms of the human immunodeficiency virus type 1 (HIV-1) 89.6 envelope glycoprotein, either complete or after deletion of the V3 loop, were expressed in a cloned attenuated measles virus (MV) vector. The recombinant viruses grew as efficiently as the parental virus and expressed high levels of the HIV protein. Expression was stable during serial passages. The immunogenicity of these recombinant vectors was tested in mice susceptible to MV and in macaques. High titers of antibodies to both MV and HIV-Env were obtained after a single injection in susceptible mice. These antibodies neutralized homologous SHIV89.6p virus, as well as several heterologous HIV-1 primary isolates. A gp160 mutant in which the V3 loop was deleted induced antibodies that neutralized heterologous viruses more efficiently than antibodies induced by the native envelope protein. A high level of CD8+ and CD4+ cells specific for HIV gp120 was also detected in MV-susceptible mice. Furthermore, recombinant MV was able to raise immune responses against HIV in mice and macaques with a preexisting anti-MV immunity. Therefore, recombinant MV vaccines inducing anti-HIV neutralizing antibodies and specific T lymphocytes responses deserve to be tested as a candidate AIDS vaccine.


Journal of Virology | 2003

A molecularly cloned Schwarz strain of measles virus vaccine induces strong immune responses in macaques and transgenic mice

Chantal Combredet; Valérie Labrousse; Lucile Mollet; Clarisse Lorin; Frédéric Delebecque; Bruno Hurtrel; Harold M. McClure; Mark B. Feinberg; Michel Brahic; Frédéric Tangy

ABSTRACT Live attenuated RNA viruses make highly efficient vaccines. Among them, measles virus (MV) vaccine has been given to a very large number of children and has been shown to be highly efficacious and safe. Therefore, this vaccine might be a very promising vector to immunize children against both measles and other infectious agents, such as human immunodeficiency virus. A vector was previously derived from the Edmonston B strain of MV, a vaccine strain abandoned 25 years ago. Sequence analysis revealed that the genome of this vector diverges from Edmonston B by 10 amino acid substitutions not related to any Edmonston subgroup. Here we describe an infectious cDNA for the Schwarz/Moraten strain, a widely used MV vaccine. This cDNA was constructed from a batch of commercial vaccine. The extremities of the cDNA were engineered in order to maximize virus yield during rescue. A previously described helper cell-based rescue system was adapted by cocultivating transfected cells on primary chicken embryo fibroblasts, the cells used to produce the Schwarz/Moraten vaccine. After two passages the sequence of the rescued virus was identical to that of the cDNA and of the published Schwarz/Moraten sequence. Two additional transcription units were introduced in the cDNA for cloning foreign genetic material. The immunogenicity of rescued virus was studied in macaques and in mice transgenic for the CD46 MV receptor. Antibody titers and T-cell responses (ELISpot) in animals inoculated with low doses of rescued virus were identical to those obtained with commercial Schwarz MV vaccine. In contrast, the immunogenicity of the previously described Edmonston B strain-derived MV clone was much lower. This new molecular clone will allow for the production of MV vaccine without having to rely on seed stocks. The additional transcription units allow expressing heterologous antigens, thereby providing polyvalent vaccines based on an approved, safe, and efficient MV vaccine strain that is used worldwide.


Journal of Virology | 2006

DC-SIGN Facilitates Fusion of Dendritic Cells with Human T-Cell Leukemia Virus Type 1-Infected Cells

Pierre-Emmanuel Ceccaldi; Frédéric Delebecque; Marie-Christine Prévost; Arnaud Moris; Jean-Pierre Abastado; Antoine Gessain; Olivier Schwartz; Simona Ozden

ABSTRACT Interactions between the oncogenic retrovirus human T-cell leukemia virus type 1 (HTLV-1) and dendritic cells (DCs) are poorly characterized. We show here that monocyte-derived DCs form syncytia and are infected upon coculture with HTLV-1-infected lymphocytes. We examined the role of DC-specific ICAM-3-grabbing nonintegrin (DC-SIGN), a C-type lectin expressed in DCs, in HTLV-1-induced syncytium formation. DC-SIGN is known to bind with high affinity to various viral envelope glycoproteins, including human immunodeficiency virus (HIV) and hepatitis C virus, as well as to the cellular receptors ICAM-2 and ICAM-3. After cocultivating DCs and HTLV-1-infected cells, we found that anti-DC-SIGN monoclonal antibodies (MAbs) were able to decrease the number and size of HTLV-1-induced syncytia. Moreover, expression of the lectin in epithelial-cell lines dramatically enhanced the ability to fuse with HTLV-1-positive cells. Interestingly, in contrast to the envelope (Env) glycoproteins of HIV and other viruses, that of HTLV-1 does not bind directly to DC-SIGN. The facilitating role of the lectin in HTLV-1 syncytium formation is mediated by its interaction with ICAM-2 and ICAM-3, as demonstrated by use of MAbs directed against these adhesion molecules. Altogether, our results indicate that DC-SIGN facilitates HTLV-1 infection and fusion of DCs through an ICAM-dependent mechanism.


Journal of Virology | 2002

A chimeric human T-cell lymphotropic virus type 1 with the envelope glycoprotein of Moloney murine leukemia virus is infectious for murine cells

Frédéric Delebecque; Karin Pramberger; Marie-Christine Prévost; Michel Brahic; Frédéric Tangy

ABSTRACT We constructed a chimeric human T-cell lymphotropic virus type 1 (HTLV-1) provirus in which the original envelope precursor sequence was replaced by that of ecotropic Moloney murine leukemia virus (Mo-MuLV). Chimeric particles produced by transient transfection of this chimeric provirus were infectious for murine cells, such as NIH 3T3 fibroblasts, lymphoid EL4 cells, and primary CD4+ T lymphocytes, whereas HTLV-1 particles were not. The infectivity of chimeric particles increased 10 times when the R peptide located at the carboxy terminus of the MuLV envelope glycoprotein was deleted. Primary murine CD4+ T lymphocytes, infected by the ΔR chimeric virus, released particles that could spread the infection to other naive murine lymphoid cells. This chimeric virus, with the Mo-MuLV envelope glycoprotein and the replication characteristics of HTLV-1, should be useful in studying the pathogenesis of HTLV-1 in a mouse model.


Journal of Virological Methods | 2002

Efficient transfer of HTLV-1 tax gene in various primary and immortalized cells using a flap lentiviral vector

Christelle Royer-Leveau; Elodie Mordelet; Frédéric Delebecque; Antoine Gessain; Pierre Charneau; Simona Ozden

Human T cell leukemia virus type 1 (HTLV-1) causes two major diseases: adult T-cell leukemia-lymphoma and tropical spastic paraparesis/HTLV-1 associated myelopathy (TSP/HAM). In order to understand the involvement of Tax protein in HTLV-1 pathogenesis, we constructed a HIV-1 based lentiviral vector containing the central DNA flap sequence and either the green fluorescent protein (GFP) or the HTLV-1 tax genes. Using these vectors, GFP and tax genes were introduced in several primary and immortalized cells of endothelial, lymphoid, astrocytic or macrophagic origin. As assessed by GFP expression, up to 100% efficiency of transduction was obtained for all cell types tested. Tax expression was detected by Western blot and immuno-fluorescence in the transduced cells. After transduction, the Tax transcriptional activity was confirmed by the transactivation of HTLV-1 LTR-lacZ or HTLV-1 LTR-GFP reporter genes. Increased CD25 and HLA DR expression was observed in human peripheral blood lymphocytes transduced with the Tax vector. These results indicate that both pathways of Tax transactivation, CREB (viral LTR) and NF-kappa B (CD25 and HLA DR), are functional after transduction by TRIP Tax vector. Therefore, this vector provides a useful tool for investigating the role of the Tax viral protein in the pathogenesis of diseases linked to HTLV-1 infection.


The Journal of Infectious Diseases | 2005

A chimeric human T cell leukemia virus type I bearing a ΔR moloney-murine leukemia virus envelope infects mice persistently and induces humoral and cellular immune responses

Frédéric Delebecque; Chantal Combredet; Anne-Sophie Gabet; Eric Wattel; Michel Brahic; Frédéric Tangy

Human T cell lymphotropic virus (HTLV) type I is the agent of adult T cell leukemia and HTLV-I-associated myelopathy. Because its pathogenesis is not well understood, a mouse model of HTLV-I infection would be valuable. We report the infection of adult BALB/c, C3H/He, 129Sv, and 129Sv IFNAR(-/-) mice with an infectious chimeric HTLV-I provirus bearing the Moloney-murine leukemia virus (Mo-MuLV) envelope glycoprotein truncated for the C-terminal R peptide. Mice were persistently infected (500-800 proviral DNA copies/10(5) splenocytes) for at least 20 weeks after inoculation. The chimeric virus disseminated to several organs, such as spleen, thymus, lung, brain, and spinal cord. The amplification of proviral integration sites showed an oligoclonal integration resembling that reported in HTLV-I-infected humans. Infected mice developed lasting humoral and cellular immune responses. This DeltaR HTLV-I/Mo-MuLV chimeric virus, with the Mo-MuLV Env tropism and HTLV-I replication characteristics, could provide a mouse model of HTLV-I infection.


Journal of General Virology | 2005

Extensive editing of a small fraction of human T-cell leukemia virus type 1 genomes by four APOBEC3 cytidine deaminases

Renaud Mahieux; Rodolphe Suspène; Frédéric Delebecque; Michel Henry; Olivier Schwartz; Simon Wain-Hobson; Jean-Pierre Vartanian


Vaccine | 2005

A recombinant live attenuated measles vaccine vector primes effective HLA-A0201-restricted cytotoxic T lymphocytes and broadly neutralizing antibodies against HIV-1 conserved epitopes

Clarisse Lorin; Frédéric Delebecque; Valérie Labrousse; Lucie Da Silva; François A. Lemonnier; Michel Brahic; Frédéric Tangy

Collaboration


Dive into the Frédéric Delebecque's collaboration.

Top Co-Authors

Avatar

Frédéric Tangy

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Lucile Mollet

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

Clarisse Lorin

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge