Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frédéric Domergue is active.

Publication


Featured researches published by Frédéric Domergue.


The Plant Cell | 2008

A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis.

Sylvain Raffaele; Fabienne Vailleau; Amandine Léger; Jérôme Joubès; Otto Miersch; Carine Huard; Elisabeth Blée; Sébastien Mongrand; Frédéric Domergue; Dominique Roby

Plant immune responses to pathogen attack include the hypersensitive response (HR), a form of programmed cell death occurring at invasion sites. We previously reported on Arabidopsis thaliana MYB30, a transcription factor that acts as a positive regulator of a cell death pathway conditioning the HR. Here, we show by microarray analyses of Arabidopsis plants misexpressing MYB30 that the genes encoding the four enzymes forming the acyl-coA elongase complex are putative MYB30 targets. The acyl-coA elongase complex synthesizes very-long-chain fatty acids (VLCFAs), and the accumulation of extracellular VLCFA-derived metabolites (leaf epidermal wax components) was affected in MYB30 knockout mutant and overexpressing lines. In the same lines, a lipid extraction procedure allowing high recovery of sphingolipids revealed changes in VLCFA contents that were amplified in response to inoculation. Finally, the exacerbated HR phenotype of MYB30-overexpressing lines was altered by the loss of function of the acyl-ACP thioesterase FATB, which causes severe defects in the supply of fatty acids for VLCFA biosynthesis. Based on these findings, we propose a model in which MYB30 modulates HR via VLCFAs by themselves, or VLCFA derivatives, as cell death messengers in plants.


Plant Physiology | 2011

Overexpression of Arabidopsis ECERIFERUM1 Promotes Wax Very-Long-Chain Alkane Biosynthesis and Influences Plant Response to Biotic and Abiotic Stresses

Brice Bourdenx; Amélie Bernard; Frédéric Domergue; Stéphanie Pascal; Amandine Léger; Dominique Roby; Marjorie Pervent; Denis Vile; Richard P. Haslam; Johnathan A. Napier; René Lessire; Jérôme Joubès

Land plant aerial organs are covered by a hydrophobic layer called the cuticle that serves as a waterproof barrier protecting plants against desiccation, ultraviolet radiation, and pathogens. Cuticle consists of a cutin matrix as well as cuticular waxes in which very-long-chain (VLC) alkanes are the major components, representing up to 70% of the total wax content in Arabidopsis (Arabidopsis thaliana) leaves. However, despite its major involvement in cuticle formation, the alkane-forming pathway is still largely unknown. To address this deficiency, we report here the characterization of the Arabidopsis ECERIFERUM1 (CER1) gene predicted to encode an enzyme involved in alkane biosynthesis. Analysis of CER1 expression showed that CER1 is specifically expressed in the epidermis of aerial organs and coexpressed with other genes of the alkane-forming pathway. Modification of CER1 expression in transgenic plants specifically affects VLC alkane biosynthesis: waxes of TDNA insertional mutant alleles are devoid of VLC alkanes and derivatives, whereas CER1 overexpression dramatically increases the production of the odd-carbon-numbered alkanes together with a substantial accumulation of iso-branched alkanes. We also showed that CER1 expression is induced by osmotic stresses and regulated by abscisic acid. Furthermore, CER1-overexpressing plants showed reduced cuticle permeability together with reduced soil water deficit susceptibility. However, CER1 overexpression increased susceptibility to bacterial and fungal pathogens. Taken together, these results demonstrate that CER1 controls alkane biosynthesis and is highly linked to responses to biotic and abiotic stresses.


The Plant Cell | 2012

Reconstitution of Plant Alkane Biosynthesis in Yeast Demonstrates That Arabidopsis ECERIFERUM1 and ECERIFERUM3 Are Core Components of a Very-Long-Chain Alkane Synthesis Complex™

Amélie Bernard; Frédéric Domergue; Stéphanie Pascal; Reinhard Jetter; Charlotte Renne; Jean-Denis Faure; Richard P. Haslam; Johnathan A. Napier; René Lessire; Jérôme Joubès

Very-long-chain alkanes are major components of cuticular waxes, a protective layer covering aerial surfaces of plants. This article shows that the Arabidopsis thaliana CER1 protein interacts with the wax-associated CER3 protein and with the cytochrome b5 isoforms found in the endoplasmic reticulum, and that these proteins constitute the enzymatic complex catalyzing the redox-dependent plant alkane synthesis. In land plants, very-long-chain (VLC) alkanes are major components of cuticular waxes that cover aerial organs, mainly acting as a waterproof barrier to prevent nonstomatal water loss. Although thoroughly investigated, plant alkane synthesis remains largely undiscovered. The Arabidopsis thaliana ECERIFERUM1 (CER1) protein has been recognized as an essential element of wax alkane synthesis; nevertheless, its function remains elusive. In this study, a screen for CER1 physical interaction partners was performed. The screen revealed that CER1 interacts with the wax-associated protein ECERIFERUM3 (CER3) and endoplasmic reticulum–localized cytochrome b5 isoforms (CYTB5s). The functional relevance of these interactions was assayed through an iterative approach using yeast as a heterologous expression system. In a yeast strain manipulated to produce VLC acyl-CoAs, a strict CER1 and CER3 coexpression resulted in VLC alkane synthesis. The additional presence of CYTB5s was found to enhance CER1/CER3 alkane production. Site-directed mutagenesis showed that CER1 His clusters are essential for alkane synthesis, whereas those of CER3 are not, suggesting that CYTB5s are specific CER1 cofactors. Collectively, our study reports the identification of plant alkane synthesis enzymatic components and supports a new model for alkane production in which CER1 interacts with both CER3 and CYTB5 to catalyze the redox-dependent synthesis of VLC alkanes from VLC acyl-CoAs.


Proceedings of the National Academy of Sciences of the United States of America | 2008

The very-long-chain hydroxy fatty acyl-CoA dehydratase PASTICCINO2 is essential and limiting for plant development

Liên Bach; Louise V. Michaelson; Richard P. Haslam; Yannick Bellec; Lionel Gissot; Jessica Marion; Marco Da Costa; Jean Pierre Boutin; Martine Miquel; Frédérique Tellier; Frédéric Domergue; Jonathan E. Markham; Frédéric Beaudoin; Johnathan A. Napier; Jean Denis Faure

Very-long-chain fatty acids (VLCFAs) are synthesized as acyl-CoAs by the endoplasmic reticulum-localized elongase multiprotein complex. Two Arabidopsis genes are putative homologues of the recently identified yeast 3-hydroxy-acyl-CoA dehydratase (PHS1), the third enzyme of the elongase complex. We showed that Arabidopsis PASTICCINO2 (PAS2) was able to restore phs1 cytokinesis defects and sphingolipid long chain base overaccumulation. Conversely, the expression of PHS1 was able to complement the developmental defects and the accumulation of long chain bases of the pas2–1 mutant. The pas2–1 mutant was characterized by a general reduction of VLCFA pools in seed storage triacylglycerols, cuticular waxes, and complex sphingolipids. Most strikingly, the defective elongation cycle resulted in the accumulation of 3-hydroxy-acyl-CoA intermediates, indicating premature termination of fatty acid elongation and confirming the role of PAS2 in this process. We demonstrated by in vivo bimolecular fluorescence complementation that PAS2 was specifically associated in the endoplasmic reticulum with the enoyl-CoA reductase CER10, the fourth enzyme of the elongase complex. Finally, complete loss of PAS2 function is embryo lethal, and the ectopic expression of PHS1 led to enhanced levels of VLCFAs associated with severe developmental defects. Altogether these results demonstrate that the plant 3-hydroxy-acyl-CoA dehydratase PASTICCINO2 is an essential and limiting enzyme in VLCFA synthesis but also that PAS2-derived VLCFA homeostasis is required for specific developmental processes.


Plant Physiology | 2003

New insight into Phaeodactylum tricornutum fatty acid metabolism. Cloning and functional characterization of plastidial and microsomal Delta 12-fatty acid desaturases

Frédéric Domergue; Patricia Spiekermann; Jens Lerchl; Christoph Beckmann; Oliver Kilian; Peter G. Kroth; Wilhem Boland; Ulrich Zähringer; Ernst Heinz

In contrast to 16:3 plants like rapeseed (Brassica napus), which contain α-linolenic acid (18:3Δ 9,12,15) and hexadecatrienoic acid (16:3Δ 7,10,13) as major polyunsaturated fatty acids in leaves, the silica-less diatom Phaeodactylum tricornutum contains eicosapentaenoic acid (EPA; 20:5Δ 5,8,11,14,17) and a different isomer of hexadecatrienoic acid (16:3Δ 6,9,12). In this report, we describe the characterization of two cDNAs having sequence homology to Δ12-fatty acid desaturases from higher plants. These cDNAs were shown to code for a microsomal and a plastidial Δ12-desaturase (PtFAD2 and PtFAD6, respectively) by heterologous expression in yeast (Saccharomyces cerevisiae) andSynechococcus, respectively. Using these systems in the presence of exogenously supplied fatty acids, the substrate specificities of the two desaturases were determined and compared with those of the corresponding rapeseed enzymes (BnFAD2 and BnFAD6). The microsomal desaturases were similarly specific for oleic acid (18:1Δ 9), suggesting that PtFAD2 is involved in the biosynthesis of EPA. In contrast, the plastidial desaturase from the higher plant and the diatom clearly differed. Although the rapeseed plastidial desaturase showed high activity toward the ω9-fatty acids 18:1Δ 9 and 16:1Δ 7, in line with the fatty acid composition of rapeseed leaves, the enzyme of P. tricornutum was highly specific for 16:1Δ 9. Our results indicate that in contrast to EPA, which is synthesized in the microsomes, the hexadecatrienoic acid isomer found in P. tricornutum(16:3Δ 6,9,12) is of plastidial origin.


Plant Physiology | 2010

Three Arabidopsis Fatty Acyl-Coenzyme A Reductases, FAR1, FAR4, and FAR5, Generate Primary Fatty Alcohols Associated with Suberin Deposition

Frédéric Domergue; Sollapura J. Vishwanath; Jérôme Joubès; Jasmine Ono; Jennifer A. Lee; Matthieu Bourdon; Reem Alhattab; Christine Lowe; Stéphanie Pascal; René Lessire; Owen Rowland

Suberin is a protective hydrophobic barrier consisting of phenolics, glycerol, and a variety of fatty acid derivatives, including C18:0-C22:0 primary fatty alcohols. An eight-member gene family encoding alcohol-forming fatty acyl-coenzyme A reductases (FARs) has been identified in Arabidopsis (Arabidopsis thaliana). Promoter-driven expression of the β-glucuronidase reporter gene indicated that three of these genes, FAR1(At5g22500), FAR4(At3g44540), and FAR5(At3g44550), are expressed in root endodermal cells. The three genes were transcriptionally induced by wounding and salt stress. These patterns of gene expression coincide with known sites of suberin deposition. We then characterized a set of mutants with T-DNA insertions in FAR1, FAR4, or FAR5 and found that the suberin compositions of roots and seed coats were modified in each far mutant. Specifically, C18:0-OH was reduced in far5-1, C20:0-OH was reduced in far4-1, and C22:0-OH was reduced in far1-1. We also analyzed the composition of polymer-bound lipids of leaves before and after wounding and found that the basal levels of C18:0-C22:0 primary alcohols in wild-type leaves were increased by wounding. In contrast, C18:0-OH and C22:0-OH were not increased by wounding in far5-1 and far1-1 mutants, respectively. Heterologous expression of FAR1, FAR4, and FAR5 in yeast confirmed that they are indeed active alcohol-forming FARs with distinct, but overlapping, chain length specificities ranging from C18:0 to C24:0. Altogether, these results indicate that Arabidopsis FAR1, FAR4, and FAR5 generate the fatty alcohols found in root, seed coat, and wound-induced leaf tissue.


Plant Physiology | 2010

Overexpression of the Epidermis-Specific Homeodomain-Leucine Zipper IV Transcription Factor OUTER CELL LAYER1 in Maize Identifies Target Genes Involved in Lipid Metabolism and Cuticle Biosynthesis

Marie Javelle; Vanessa Vernoud; Nathalie Depège-Fargeix; Christine Arnould; Delphine Oursel; Frédéric Domergue; Xavier Sarda; Peter M. Rogowsky

Transcription factors of the homeodomain-leucine zipper IV (HD-ZIP IV) family play crucial roles in epidermis-related processes. To gain further insight into the molecular function of OUTER CELL LAYER1 (OCL1), 14 target genes up- or down-regulated in transgenic maize (Zea mays) plants overexpressing OCL1 were identified. The 14 genes all showed partial coexpression with OCL1 in maize organs, and several of them shared preferential expression in the epidermis with OCL1. They encoded proteins involved in lipid metabolism, defense, envelope-related functions, or cuticle biosynthesis and include ZmWBC11a (for white brown complex 11a), an ortholog of AtWBC11 involved in the transport of wax and cutin molecules. In support of the annotations, OCL1-overexpressing plants showed quantitative and qualitative changes of cuticular wax compounds in comparison with wild-type plants. An increase in C24 to C28 alcohols was correlated with the transcriptional up-regulation of ZmFAR1, coding for a fatty acyl-coenzyme A reductase. Transcriptional activation of ZmWBC11a by OCL1 was likely direct, since transactivation in transiently transformed maize kernels was abolished by a deletion of the activation domain in OCL1 or mutations in the L1 box, a cis-element bound by HD-ZIP IV transcription factors. Our data demonstrate that, in addition to AP2/EREBP and MYB-type transcription factors, members of the HD-ZIP IV family contribute to the transcriptional regulation of genes involved in cuticle biosynthesis.


Plant Cell Reports | 2015

Suberin: biosynthesis, regulation, and polymer assembly of a protective extracellular barrier

Sollapura J. Vishwanath; Camille Delude; Frédéric Domergue; Owen Rowland

Suberin is a lipid-phenolic biopolyester deposited in the cell walls of certain boundary tissue layers of plants, such as root endodermis, root and tuber peridermis, and seed coats. Suberin serves as a protective barrier in these tissue layers, controlling, for example, water and ion transport. It is also a stress-induced anti-microbial barrier. The suberin polymer contains a variety of C16–C24 chain-length aliphatics, such as ω-hydroxy fatty acids, α,ω-dicarboxylic fatty acids, and primary fatty alcohols. Suberin also contains high amounts of glycerol and phenolics, especially ferulic acid. In addition, non-covalently linked waxes are likely associated with the suberin polymer. This review focusses on the suberin biosynthetic enzymes identified to date, which include β-ketoacyl-CoA synthases, fatty acyl reductases, long-chain acyl-CoA synthetases, cytochrome P450 monooxygenases, glycerol 3-phosphate acyltransferases, and phenolic acyltransferases. We also discuss recent advances in our understanding of the transport of suberin components intracellularly and to the cell wall, polymer assembly, and the regulation of suberin deposition.


Plant Science | 2012

Plant fatty acyl reductases: Enzymes generating fatty alcohols for protective layers with potential for industrial applications

Owen Rowland; Frédéric Domergue

Primary fatty alcohols are found throughout the biological world, either in free form or in a combined state. They are common components of plant surface lipids (i.e. cutin, suberin, sporopollenin, and associated waxes) and their absence can significantly perturb these essential barriers. Fatty alcohols and/or derived compounds are also likely to have direct functions in plant biotic and abiotic interactions. An evolutionarily related set of alcohol-forming fatty acyl reductases (FARs) is present in all kingdoms of life. Plant microsomal and plastid-associated FAR enzymes have been characterized, acting on acyl-coenzymeA (acyl-CoA) or acyl-acyl carrier protein (acyl-ACP) substrates, respectively. FARs have distinct substrate specificities both with regard to chain length and chain saturation. Fatty alcohols and wax esters, which are a combination of fatty alcohol and fatty acid, have a variety of commercial applications. The expression of FARs with desired specificities in transgenic microbes or oilseed crops would provide a novel means of obtaining these valuable compounds. In the present review, we report on recent progress in characterizing plant FAR enzymes and in understanding the biological roles of primary fatty alcohols, as well as describe the biotechnological production and industrial uses of fatty alcohols.


Plant Journal | 2013

The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process

Stéphanie Pascal; Amélie Bernard; Maud Sorel; Marjorie Pervent; Denis Vile; Richard P. Haslam; Johnathan A. Napier; René Lessire; Frédéric Domergue; Jérôme Joubès

Plant aerial organs are covered by cuticular waxes, which form a hydrophobic crystal layer that mainly serves as a waterproof barrier. Cuticular wax is a complex mixture of very long chain lipids deriving from fatty acids, predominantly of chain lengths from 26 to 34 carbons, which result from acyl-CoA elongase activity. The biochemical mechanism of elongation is well characterized; however, little is known about the specific proteins involved in the elongation of compounds with more than 26 carbons available as precursors of wax synthesis. In this context, we characterized the three Arabidopsis genes of the CER2-like family: CER2, CER26 and CER26-like . Expression pattern analysis showed that the three genes are differentially expressed in an organ- and tissue-specific manner. Using individual T-DNA insertion mutants, together with a cer2 cer26 double mutant, we characterized the specific impact of the inactivation of the different genes on cuticular waxes. In particular, whereas the cer2 mutation impaired the production of wax components longer than 28 carbons, the cer26 mutant was found to be affected in the production of wax components longer than 30 carbons. The analysis of the acyl-CoA pool in the respective transgenic lines confirmed that inactivation of both genes specifically affects the fatty acid elongation process beyond 26 carbons. Furthermore, ectopic expression of CER26 in transgenic plants demonstrates that CER26 facilitates the elongation of the very long chain fatty acids of 30 carbons or more, with high tissular and substrate specificity.

Collaboration


Dive into the Frédéric Domergue's collaboration.

Top Co-Authors

Avatar

Jérôme Joubès

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

René Lessire

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge