Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jérôme Joubès is active.

Publication


Featured researches published by Jérôme Joubès.


Progress in Lipid Research | 2013

Arabidopsis cuticular waxes: Advances in synthesis, export and regulation

Amélie Bernard; Jérôme Joubès

Cuticular waxes and cutin form the cuticle, a hydrophobic layer covering the aerial surfaces of land plants and acting as a protective barrier against environmental stresses. Very-long-chain fatty acid derived compounds that compose the cuticular waxes are produced in the endoplasmic reticulum of epidermal cells before being exported to the environmental face of the epidermis. Twenty years of genetic studies on Arabidopsis thaliana have led to the molecular characterization of enzymes catalyzing major steps in fatty acid elongation and wax biosynthesis. Although transporters required for wax export from the plasma membrane have been identified, intracellular and extracellular traffic remains largely unknown. In accordance with its major function in producing an active waterproof barrier, wax metabolism is up-regulated at the transcriptional level in response to water deficiency. However its developmental regulation is still poorly described. Here, we discuss the present knowledge of wax functions, biosynthesis and transport as well as the regulation of these processes.


Plant Journal | 2013

The Arabidopsis cer26 mutant, like the cer2 mutant, is specifically affected in the very long chain fatty acid elongation process

Stéphanie Pascal; Amélie Bernard; Maud Sorel; Marjorie Pervent; Denis Vile; Richard P. Haslam; Johnathan A. Napier; René Lessire; Frédéric Domergue; Jérôme Joubès

Plant aerial organs are covered by cuticular waxes, which form a hydrophobic crystal layer that mainly serves as a waterproof barrier. Cuticular wax is a complex mixture of very long chain lipids deriving from fatty acids, predominantly of chain lengths from 26 to 34 carbons, which result from acyl-CoA elongase activity. The biochemical mechanism of elongation is well characterized; however, little is known about the specific proteins involved in the elongation of compounds with more than 26 carbons available as precursors of wax synthesis. In this context, we characterized the three Arabidopsis genes of the CER2-like family: CER2, CER26 and CER26-like . Expression pattern analysis showed that the three genes are differentially expressed in an organ- and tissue-specific manner. Using individual T-DNA insertion mutants, together with a cer2 cer26 double mutant, we characterized the specific impact of the inactivation of the different genes on cuticular waxes. In particular, whereas the cer2 mutation impaired the production of wax components longer than 28 carbons, the cer26 mutant was found to be affected in the production of wax components longer than 30 carbons. The analysis of the acyl-CoA pool in the respective transgenic lines confirmed that inactivation of both genes specifically affects the fatty acid elongation process beyond 26 carbons. Furthermore, ectopic expression of CER26 in transgenic plants demonstrates that CER26 facilitates the elongation of the very long chain fatty acids of 30 carbons or more, with high tissular and substrate specificity.


Plant Physiology and Biochemistry | 2009

Overexpression of a grapevine R2R3-MYB factor in tomato affects vegetative development, flower morphology and flavonoid and terpenoid metabolism

Ali Mahjoub; Michel Hernould; Jérôme Joubès; Alain Decendit; Mohamed Mars; François Barrieu; Saïd Hamdi; Serge Delrot

Although the terpenoid pathway constitutes, with the phenylpropanoid metabolism, the major pathway of secondary metabolism in plants, little is known about its regulation. Overexpression of a Vitis vinifera R2R3-MYB transcription factor (VvMYB5b) in tomato induced pleiotropic changes including dwarfism, modified leaf structure, alterations of floral morphology, pigmented and glossy fruits at the green-mature stage and impaired seed germination. Two main branches of secondary metabolism, which profoundly influence the organoleptic properties of the fruit, were affected in the opposite way by VvMYB5b overexpression. Phenylpropanoid metabolism was down regulated whereas the amount of beta-carotene was up regulated. This is the first example of the independent regulation of phenylpropanoid and carotenoid metabolism. The strongest modification concerns a decrease in beta-amyrin, the precursor of the oleanolic acid, which is the major component of grape waxes. Scanning electron microscopy analysis of fruits and leaves confirms the alteration of wax metabolism and a modification of cell size and shape. This may potentially impact resistance/tolerance to biotic and abiotic stresses. The results are compared with a similar approach using heterologous expression of VvMYB5b in tobacco.


Plant Physiology | 2015

ECERIFERUM2-LIKE Proteins Have Unique Biochemical and Physiological Functions in Very-Long-Chain Fatty Acid Elongation

Tegan M. Haslam; Richard P. Haslam; Didier Thoraval; Stéphanie Pascal; Camille Delude; Frédéric Domergue; Aurora Mañas Fernández; Frédéric Beaudoin; Johnathan A. Napier; Ljerka Kunst; Jérôme Joubès

An Arabidopsis protein that lacks enzymatic activity in long-chain fatty-acid condensation nonetheless affects chain length specificity of very-long-chain fatty acid elongation, which is important for cuticle and pollen coat function. The extension of very-long-chain fatty acids (VLCFAs) for the synthesis of specialized apoplastic lipids requires unique biochemical machinery. Condensing enzymes catalyze the first reaction in fatty acid elongation and determine the chain length of fatty acids accepted and produced by the fatty acid elongation complex. Although necessary for the elongation of all VLCFAs, known condensing enzymes cannot efficiently synthesize VLCFAs longer than 28 carbons, despite the prevalence of C28 to C34 acyl lipids in cuticular wax and the pollen coat. The eceriferum2 (cer2) mutant of Arabidopsis (Arabidopsis thaliana) was previously shown to have a specific deficiency in cuticular waxes longer than 28 carbons, and heterologous expression of CER2 in yeast (Saccharomyces cerevisiae) demonstrated that it can modify the acyl chain length produced by a condensing enzyme from 28 to 30 carbon atoms. Here, we report the physiological functions and biochemical specificities of the CER2 homologs CER2-LIKE1 and CER2-LIKE2 by mutant analysis and heterologous expression in yeast. We demonstrate that all three CER2-LIKEs function with the same small subset of condensing enzymes, and that they have different effects on the substrate specificity of the same condensing enzyme. Finally, we show that the changes in acyl chain length caused by each CER2-LIKE protein are of substantial importance for cuticle formation and pollen coat function.


Plant Physiology | 2014

Analyses of tomato fruit brightness mutants uncover both cutin-deficient and cutin- abundant mutants and a new hypomorphic allele of GDSL lipase

Johann Petit; Cécile Bres; Daniel Just; Virginie Garcia; Jean-Philippe Mauxion; Didier Marion; Bénédicte Bakan; Jérôme Joubès; Frédéric Domergue

Opposite changes in the cutin polyester component in tomato fruit cuticle mutants lead to increased fruit glossiness. The cuticle is a protective layer synthesized by epidermal cells of the plants and consisting of cutin covered and filled by waxes. In tomato (Solanum lycopersicum) fruit, the thick cuticle embedding epidermal cells has crucial roles in the control of pathogens, water loss, cracking, postharvest shelf-life, and brightness. To identify tomato mutants with modified cuticle composition and architecture and to further decipher the relationships between fruit brightness and cuticle in tomato, we screened an ethyl methanesulfonate mutant collection in the miniature tomato cultivar Micro-Tom for mutants with altered fruit brightness. Our screen resulted in the isolation of 16 glossy and 8 dull mutants displaying changes in the amount and/or composition of wax and cutin, cuticle thickness, and surface aspect of the fruit as characterized by optical and environmental scanning electron microscopy. The main conclusions on the relationships between fruit brightness and cuticle features were as follows: (1) screening for fruit brightness is an effective way to identify tomato cuticle mutants; (2) fruit brightness is independent from wax load variations; (3) glossy mutants show either reduced or increased cutin load; and (4) dull mutants display alterations in epidermal cell number and shape. Cuticle composition analyses further allowed the identification of groups of mutants displaying remarkable cuticle changes, such as mutants with increased dicarboxylic acids in cutin. Using genetic mapping of a strong cutin-deficient mutation, we discovered a novel hypomorphic allele of GDSL lipase carrying a splice junction mutation, thus highlighting the potential of tomato brightness mutants for advancing our understanding of cuticle formation in plants.


Biochemical Journal | 2012

A novel class of PTEN protein in Arabidopsis displays unusual phosphoinositide phosphatase activity and efficiently binds phosphatidic acid

Anne Pribat; Rodnay Sormani; Mathieu Rousseau-Gueutin; Magdalena M. Julkowska; Christa Testerink; Jérôme Joubès; Michel Castroviejo; Michel Laguerre; Christian Meyer; Véronique Germain

PTEN (phosphatase and tensin homologue deleted on chromosome ten) proteins are dual phosphatases with both protein and phosphoinositide phosphatase activity. They modulate signalling pathways controlling growth, metabolism and apoptosis in animals and are implied in several human diseases. In the present paper we describe a novel class of PTEN pro-teins in plants, termed PTEN2, which comprises the AtPTEN (Arabidopsis PTEN) 2a and AtPTEN2b proteins in Arabidopsis. Both display low in vitro tyrosine phosphatase activity. In addition, AtPTEN2a actively dephosphorylates in vitro the 3 phosphate group of PI3P (phosphatidylinositol 3-phosphate), PI(3,4)P2 (phosphatidylinositol 3,4-bisphosphate) and PI(3,5)P2 (phosphatidylinositol 3,5-bisphosphate). In contrast with animal PTENs, PI(3,4,5)P3 (phosphatidylinositol 3,4,5-trisphosphate) is a poor substrate. Site-directed mutagenesis of AtPTEN2a and molecular modelling of protein-phosphoinositide interactions indicated that substitutions at the PTEN2 core catalytic site of the Lys267 and Gly268 residues found in animals, which are critical for animal PTEN activity, by Met267 and Ala268 found in the eudicot PTEN2 are responsible for changes in substrate specificity. Remarkably, the AtPTEN2a protein also displays strong binding activity for PA (phosphatidic acid), a major lipid second messenger in plants. Promoter::GUS (β-glucuronidase) fusion, transcript and protein analyses further showed the transcriptional regulation of the ubiquitously expressed AtPTEN2a and AtPTEN2b by salt and osmotic stress. The results of the present study suggest a function for this novel class of plant PTEN proteins as an effector of lipid signalling in plants.


Plant Physiology | 2016

The Glycerol-3-Phosphate Acyltransferase GPAT6 from Tomato Plays a Central Role in Fruit Cutin Biosynthesis

Johann Petit; Cécile Bres; Jean-Philippe Mauxion; Fabienne Wong Jun Tai; Laetitia B. B. Martin; Eric A. Fich; Jérôme Joubès; Jocelyn K. C. Rose; Frédéric Domergue

Identification by mapping-by-sequencing of the causal mutation underlying a tomato cutin-deficient mutant unravels the central role of GPAT6 in fruit cuticle formation. The thick cuticle covering and embedding the epidermal cells of tomato (Solanum lycopersicum) fruit acts not only as a protective barrier against pathogens and water loss but also influences quality traits such as brightness and postharvest shelf-life. In a recent study, we screened a mutant collection of the miniature tomato cultivar Micro-Tom and isolated several glossy fruit mutants in which the abundance of cutin, the polyester component of the cuticle, was strongly reduced. We employed a newly developed mapping-by-sequencing strategy to identify the causal mutation underlying the cutin deficiency in a mutant thereafter named gpat6-a (for glycerol-3-phosphate acyltransferase6). To this end, a backcross population (BC1F2) segregating for the glossy trait was phenotyped. Individuals displaying either a wild-type or a glossy fruit trait were then pooled into bulked populations and submitted to whole-genome sequencing prior to mutation frequency analysis. This revealed that the causal point mutation in the gpat6-a mutant introduces a charged amino acid adjacent to the active site of a GPAT6 enzyme. We further showed that this mutation completely abolished the GPAT activity of the recombinant protein. The gpat6-a mutant showed perturbed pollen formation but, unlike a gpat6 mutant of Arabidopsis (Arabidopsis thaliana), was not male sterile. The most striking phenotype was observed in the mutant fruit, where cuticle thickness, composition, and properties were altered. RNA sequencing analysis highlighted the main processes and pathways that were affected by the mutation at the transcriptional level, which included those associated with lipid, secondary metabolite, and cell wall biosynthesis.


Plant Cell and Environment | 2017

Arabidopsis ketoacyl-CoA synthase 16 forms C36/C38 acyl precursors for leaf trichome and pavement surface wax

Daniela Hegebarth; Christopher Buschhaus; Jérôme Joubès; Didier Thoraval; David Bird; Reinhard Jetter

The aliphatic waxes sealing plant surfaces against environmental stress are generated by fatty acid elongase complexes, each containing a β-ketoacyl-CoA synthase (KCS) enzyme that catalyses a crucial condensation forming a new C─C bond to extend the carbon backbone. The relatively high abundance of C35 and C37 alkanes derived from C36 and C38 acyl-CoAs in Arabidopsis leaf trichomes (relative to other epidermis cells) suggests differences in the elongation machineries of different epidermis cell types, possibly involving KCS16, a condensing enzyme expressed preferentially in trichomes. Here, KCS16 was found expressed primarily in Arabidopsis rosette leaves, flowers and siliques, and the corresponding protein was localized to the endoplasmic reticulum. The cuticular waxes on young leaves and isolated leaf trichomes of ksc16 loss-of-function mutants were depleted of C35 and C37 alkanes and alkenes, whereas expression of Arabidopsis KCS16 in yeast and ectopic overexpression in Arabidopsis resulted in accumulation of C36 and C38 fatty acid products. Taken together, our results show that KCS16 is the sole enzyme catalysing the elongation of C34 to C38 acyl-CoAs in Arabidopsis leaf trichomes and that it contributes to the formation of extra-long compounds in adjacent pavement cells.


Plant Physiology | 2016

Primary fatty alcohols are major components of suberized root tissues of Arabidopsis in the form of alkyl hydroxycinnamates

Camille Delude; Laetitia Fouillen; Palash Bhar; Marie-Josée Cardinal; Stéphanie Pascal; Patricia Santos; Dylan K. Kosma; Jérôme Joubès; Owen Rowland; Frédéric Domergue

Fatty alcohols that are not covalently linked to the polymer suberin in Arabidopsis roots are soluble waxes in the form of alkyl hydroxycinnamates. Suberin is a complex hydrophobic polymer that acts as a barrier controlling water and solute fluxes and restricting pathogen infections. Suberin is deposited immediately outside of the plasmalemma in the cell wall of certain tissues such as endodermis of roots, aerial and underground periderms, and seed coats. Suberin consists of a variety of fatty acid derivatives polymerized with glycerol and phenolics. In this study, we show using liquid chromatography-tandem mass spectrometry and gas chromatography-mass spectrometry techniques that most of the fatty alcohols not covalently linked to the suberin polymer are in the form of alkyl hydroxycinnamates (AHCs), with alkyl caffeates predominating. Such compounds are not restricted to the periderm of mature roots but also are present in the endodermis of younger roots, where they are not extracted by rapid dipping in chloroform. Analysis of several mutants affected in key enzymes involved in the biosynthesis and export of suberin monomers suggests that the formation of the suberin polymer and associated waxes involves common pathways and occurs concomitantly in Arabidopsis (Arabidopsis thaliana) roots. Although fatty alcohols represent only minor components of the suberin polymer in Arabidopsis roots, this study demonstrates that they constitute the major aliphatics of suberin-associated waxes in the form of AHCs. Therefore, our results indicate that esterified fatty alcohols, both soluble and polymerized forms, represent major constituents of Arabidopsis root suberized barriers, being as abundant as α,ω-dicarboxylic and unsubstituted fatty acids. In addition, our results show that suberized layers represent a major sink for acyl-lipid metabolism in Arabidopsis roots.


Journal of Biological Chemistry | 2014

The bifunctional protein TtFARAT from Tetrahymena thermophila catalyzes the formation of both precursors required to initiate ether lipid biosynthesis.

Franziska Dittrich-Domergue; Jérôme Joubès; Patrick Moreau; René Lessire; Sten Stymne; Frédéric Domergue

Background: Fatty acyl reductases (FARs) are monofunctional proteins of similar size and domain structure. Results: The only FAR present in Tetrahymena thermophila is fused with a dihydroxyacetone phosphate acyltransferase and localized in the peroxisomes. Conclusion: T. thermophila FAR-like protein is a bifunctional protein resulting from a gene fusion event. Significance: T. thermophila FAR-like protein provides both substrates required to initiate ether lipid biosynthesis. The biosynthesis of ether lipids and wax esters requires as precursors fatty alcohols, which are synthesized by fatty acyl reductases (FARs). The presence of ether glycerolipids as well as branched wax esters has been reported in several free-living ciliate protozoa. In the genome of Tetrahymena thermophila, the only ORF sharing similarities with FARs is fused to an acyltransferase-like domain, whereas, in most other organisms, FARs are monofunctional proteins of similar size and domain structure. Here, we used heterologous expression in plant and yeast to functionally characterize the activities catalyzed by this protozoan protein. Transient expression in tobacco epidermis of a truncated form fused to the green fluorescence protein followed by confocal microscopy analysis suggested peroxisomal localization. In vivo approaches conducted in yeast indicated that the N-terminal FAR-like domain produced both 16:0 and 18:0 fatty alcohols, whereas the C-terminal acyltransferase-like domain was able to rescue the lethal phenotype of the yeast double mutant gat1Δ gat2Δ. Using in vitro approaches, we further demonstrated that this domain is a dihydroxyacetone phosphate acyltransferase that uses preferentially 16:0-coenzyme A as an acyl donor. Finally, coexpression in yeast with the alkyl-dihydroxyacetone phosphate synthase from T. thermophila resulted the detection of various glycerolipids with an ether bond, indicating reconstitution of the ether lipid biosynthetic pathway. Together, these results demonstrate that this FAR-like protein is peroxisomal and bifunctional, providing both substrates required by alkyl-dihydroxyacetone phosphate synthase to initiate ether lipid biosynthesis.

Collaboration


Dive into the Jérôme Joubès's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cécile Bres

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jean-Philippe Mauxion

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Johann Petit

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

René Lessire

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge