Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederic G. Sala is active.

Publication


Featured researches published by Frederic G. Sala.


Journal of Surgical Research | 2009

Tissue-Engineered Small Intestine and Stomach Form from Autologous Tissue in a Preclinical Large Animal Model

Frederic G. Sala; Shaun M. Kunisaki; Erin R. Ochoa; Joseph P. Vacanti; Tracy C. Grikscheit

BACKGROUND Tissue-engineered small intestine, stomach, large intestine, esophagus, and gastroesophageal (GE) junction have been successfully formed from syngeneic cells, and employed as a rescue therapy in a small animal model. The purpose of this study is to determine if engineered intestine and stomach could be generated in an autologous, preclinical large animal model, and to identify if the tissue-engineered intestine retained features of an intact stem cell niche. METHODS A short segment of jejunum or stomach was resected from 6-wk-old Yorkshire swine. Organoid units, multicellular clusters with predominantly epithelial content, were generated and loaded onto biodegradable scaffold tubes. The constructs were then implanted intraperitoneally in the autologous host. Seven wk later, all implants were harvested and analyzed using histology and immunohistochemistry techniques. RESULTS Autologous engineered small intestine and stomach formed. Tissue-engineered intestinal architecture replicated that of native intestine. Histology revealed tissue-engineered small intestinal mucosa composed of a columnar epithelium with all differentiated intestinal cell types adjacent to an innervated muscularis mucosae. Intestinal subepithelial myofibroblasts, specialized cells that participate in the stem cell niche formation, were identified. Moreover, cells positive for the putative intestinal stem cell marker, doublecortin and CaM kinase-like-1 (DCAMKL-1) expression were identified at the base of the crypts. Finally, tissue-engineered stomach also formed with antral-type mucosa (mucus cells and surface foveolar cells) and a muscularis. CONCLUSION We successfully generated tissue-engineered intestine with correct architecture, including features of an intact stem cell niche, in the pig model. To our knowledge, this is the first demonstration in which tissue-engineered intestine was successfully generated in an autologous manner in an animal model, which may better emulate a human host and the intended therapeutic pathway for humans.


Development | 2006

Gli3-mediated somitic Fgf10 expression gradients are required for the induction and patterning of mammary epithelium along the embryonic axes.

Jacqueline M. Veltmaat; Frédéric Relaix; Lendy T. Le; Klaus Kratochwil; Frederic G. Sala; Wendy van Veelen; Ritva Rice; Bradley Spencer-Dene; Arnaud Mailleux; David Rice; Jean Paul Thiery; Saverio Bellusci

Little is known about the regulation of cell fate decisions that lead to the formation of five pairs of mammary placodes in the surface ectoderm of the mouse embryo. We have previously shown that fibroblast growth factor 10 (FGF10) is required for the formation of mammary placodes 1, 2, 3 and 5. Here, we have found that Fgf10 is expressed only in the somites underlying placodes 2 and 3, in gradients across and within these somites. To test whether somitic FGF10 is required for the formation of these two placodes, we analyzed a number of mutants with different perturbations of somitic Fgf10 gradients for the presence of WNT signals and ectodermal multilayering, markers for mammary line and placode formation. The mammary line is displaced dorsally, and formation of placode 3 is impaired in Pax3ILZ/ILZ mutants, which do not form ventral somitic buds. Mammary line formation is impaired and placode 3 is absent in Gli3Xt-J/Xt-J and hypomorphic Fgf10 mutants, in which the somitic Fgf10 gradient is shortened dorsally and less overall Fgf10 is expressed, respectively. Recombinant FGF10 rescued mammogenesis in Fgf10-/- and Gli3Xt-J/Xt-J flanks. We correlate increasing levels of somitic FGF10 with progressive maturation of the surface ectoderm, and show that full expression of somitic Fgf10, co-regulated by GLI3, is required for the anteroposterior pattern in which the flank ectoderm acquires a mammary epithelial identity. We propose that the intra-somitic Fgf10 gradient, together with ventral elongation of the somites, determines the correct dorsoventral position of mammary epithelium along the flank.


BMC Developmental Biology | 2005

FGF10/FGFR2b signaling plays essential roles during in vivo embryonic submandibular salivary gland morphogenesis

Tina Jaskoll; George Abichaker; Daniel Witcher; Frederic G. Sala; Saverio Bellusci; Mohammad K. Hajihosseini; Michael Melnick

BackgroundAnalyses of Fgf10 and Fgfr2b mutant mice, as well as human studies, suggest that FGF10/FGFR2b signaling may play an essential, nonredundant role during embryonic SMG development. To address this question, we have analyzed the SMG phenotype in Fgf10 and Fgfr2b heterozygous and null mutant mice. In addition, although previous studies suggest that the FGF10/FGFR2b and FGF8/FGFR2c signaling pathways are functionally interrelated, little is known about the functional relationship between these two pathways during SMG development. We have designed in vivo and in vitro experiments to address this question.ResultsWe analyzed Fgf10 and Fgfr2b heterozygous mutant and null mice and demonstrate dose-dependent SMG phenotypic differences. Hypoplastic SMGs are seen in Fgf10 and Fgfr2b heterozygotes whereas SMG aplasia is seen in Fgf10 and Fgfr2b null embryos. Complementary in vitro studies further indicate that FGF10/FGFR2b signaling regulates SMG epithelial branching and cell proliferation. To delineate the functional relationship between the FGF10/FGFR2b and FGF8/FGFR2c pathways, we compared the SMG phenotype in Fgfr2c+/Δ/Fgf10+/- double heterozygous mice to that seen in wildtype, Fgf10+/- (Fgfr2c+/+/Fgf10+/-) and Fgfr2c+/Δ(Fgfr2c+/Δ/Fgf10+/+) single heterozygous mutant littermates and demonstrate genotype-specific SMG phenotypes. In addition, exogenous FGF8 was able to rescue the abnormal SMG phenotype associated with abrogated FGFR2b signaling in vitro and restore branching to normal levels.ConclusionOur data indicates that FGF10/FGFR2b signaling is essential for the SMG epithelial branching and histodifferentiation, but not earliest initial bud formation. The functional presence of other endogenous signaling pathways could not prevent complete death of embryonic SMG cells in Fgf10 and Fgfr2b null mice. Though we were able to rescue the abnormal phenotype associated with reduced in vitro FGF10/FGFR2b signaling with exogenous FGF8 supplementation, our results indicate that the FGF10/FGFR2b and FGF8/FGFR2c are nonredundant signaling pathways essential for in vivo embryonic SMG development. What remains to be determined is the in vivo functional relationship between the FGF10/FGFR2b signal transduction pathway and other key signaling pathways, and how these pathways are integrated during embryonic SMG development to compose the functional epigenome.


Hepatology | 2007

Fibroblast growth factor 10 is critical for liver growth during embryogenesis and controls hepatoblast survival via β‐catenin activation

T. Berg; C. Bart Rountree; Lily Lee; Joaquin J. Estrada; Frederic G. Sala; Andrea Choe; Jacqueline M. Veltmaat; Stijn De Langhe; Rene Lee; Hide Tsukamoto; Saverio Bellusci; Kasper S. Wang

Fibroblast growth factor (FGF) signaling and β‐catenin activation have been shown to be crucial for early embryonic liver development. This study determined the significance of FGF10‐mediated signaling in a murine embryonic liver progenitor cell population as well as its relation to β‐catenin activation. We observed that Fgf10−/− and Fgfr2b−/− mouse embryonic livers are smaller than wild‐type livers; Fgf10−/− livers exhibit diminished proliferation of hepatoblasts. A comparison of β‐galactosidase activity as a readout of Fgf10 expression in Fgf10+/LacZ mice and of β‐catenin activation in TOPGAL mice, demonstrated peak Fgf10 expression from E9 to E13.5 coinciding with peak β‐catenin activation. Flow cytometric isolation and marker gene expression analysis of LacZ+ cells from E13.5 Fgf10+/LacZ and TOPGAL livers, respectively, revealed that Fgf10 expression and β‐catenin signaling occur distinctly in stellate/myofibroblastic cells and hepatoblasts, respectively. Moreover, hepatoblasts express Fgfr2b, which strongly suggests they can respond to recombinant FGF10 produced by stellate cells. Fgfr2b−/−/TOPGAL+/+ embryonic livers displayed less β‐galactosidase activity than livers of Fgfr2b+/+/TOPGAL+/+ littermates. In addition, cultures of whole liver explants in Matrigel or cell in suspension from E12.5 TOPGAL+/+mice displayed a marked increase in β‐galactosidase activity and cell survival upon treatment with recombinant FGF10, indicating that FGFR (most likely FGFR2B) activation is upstream of β‐catenin signaling and promote hepatoblast survival. Conclusion: Embryonic stellate/myofibroblastic cells promote β‐catenin activation in and survival of hepatoblasts via FGF10‐mediated signaling. We suggest a role for stellate/myofibroblastic FGF10 within the liver stem cell niche in supporting the proliferating hepatoblast. (HEPATOLOGY 2007.)


PLOS ONE | 2011

Contrasting Expression of Canonical Wnt Signaling Reporters TOPGAL, BATGAL and Axin2LacZ during Murine Lung Development and Repair

Denise Al Alam; Melissa Green; Reza Tabatabai Irani; Sara Parsa; Soula Danopoulos; Frederic G. Sala; Jonathan Branch; Elie El Agha; Caterina Tiozzo; Robert Voswinckel; Edwin C. Jesudason; David Warburton; Saverio Bellusci

Canonical Wnt signaling plays multiple roles in lung organogenesis and repair by regulating early progenitor cell fates: investigation has been enhanced by canonical Wnt reporter mice, TOPGAL, BATGAL and Axin2LacZ. Although widely used, it remains unclear whether these reporters convey the same information about canonical Wnt signaling. We therefore compared beta-galactosidase expression patterns in canonical Wnt signaling of these reporter mice in whole embryo versus isolated prenatal lungs. To determine if expression varied further during repair, we analyzed comparative pulmonary expression of beta-galactosidase after naphthalene injury. Our data show important differences between reporter mice. While TOPGAL and BATGAL lines demonstrate Wnt signaling well in early lung epithelium, BATGAL expression is markedly reduced in late embryonic and adult lungs. By contrast, Axin2LacZ expression is sustained in embryonic lung mesenchyme as well as epithelium. Three days into repair after naphthalene, BATGAL expression is induced in bronchial epithelium as well as TOPGAL expression (already strongly expressed without injury). Axin2LacZ expression is increased in bronchial epithelium of injured lungs. Interestingly, both TOPGAL and Axin2LacZ are up regulated in parabronchial smooth muscle cells during repair. Therefore the optimal choice of Wnt reporter line depends on whether up- or down-regulation of canonical Wnt signal reporting in either lung epithelium or mesenchyme is being compared.


Mechanisms of Development | 2008

Tracheal occlusion increases the rate of epithelial branching of embryonic mouse lung via the FGF10-FGFR2b-Sprouty2 pathway

Mathieu Unbekandt; Pierre-Marie Del Moral; Frederic G. Sala; Saverio Bellusci; David Warburton; Vincent Fleury

Tracheal occlusion during lung development accelerates growth in response to increased intraluminal pressure. In order to investigate the role of internal pressure on murine early lung development, we cauterized the tip of the trachea, to occlude it, and thus to increase internal pressure. This method allowed us to evaluate the effect of tracheal occlusion on the first few branch generations and on gene expression. We observed that the elevation of internal pressure induced more than a doubling in branching, associated with increased proliferation, while branch elongation speed increased 3-fold. Analysis by RT-PCR showed that Fgf10, Vegf, Sprouty2 and Shh mRNA expressions were affected by the change of intraluminal pressure after 48h of culture, suggesting mechanotransduction via internal pressure of these key developmental genes. Tracheal occlusion did not increase the number of branches of Fgfr2b-/- mice lungs nor of wild type lungs cultured with Fgfr2b antisense RNA. Tracheal occlusion of Fgf10(LacZ/-) hypomorphic lungs led to the formation of fewer branches than in wild type. We conclude that internal pressure regulates the FGF10-FGFR2b-Sprouty2 pathway and thus the speed of the branching process. Therefore pressure levels, fixed both by epithelial secretion and boundary conditions, can control or modulate the branching process via FGF10-FGFR2b-Sprouty2.


American Journal of Physiology-gastrointestinal and Liver Physiology | 2015

Human and mouse tissue-engineered small intestine both demonstrate digestive and absorptive function

Christa N. Grant; Salvador Garcia Mojica; Frederic G. Sala; J. Ryan Hill; Daniel E. Levin; Allison L. Speer; Erik R. Barthel; Hiroyuki Shimada; Nicholas C. Zachos; Tracy C. Grikscheit

Short bowel syndrome (SBS) is a devastating condition in which insufficient small intestinal surface area results in malnutrition and dependence on intravenous parenteral nutrition. There is an increasing incidence of SBS, particularly in premature babies and newborns with congenital intestinal anomalies. Tissue-engineered small intestine (TESI) offers a therapeutic alternative to the current standard treatment, intestinal transplantation, and has the potential to solve its biggest challenges, namely donor shortage and life-long immunosuppression. We have previously demonstrated that TESI can be generated from mouse and human small intestine and histologically replicates key components of native intestine. We hypothesized that TESI also recapitulates native small intestine function. Organoid units were generated from mouse or human donor intestine and implanted into genetically identical or immunodeficient host mice. After 4 wk, TESI was harvested and either fixed and paraffin embedded or immediately subjected to assays to illustrate function. We demonstrated that both mouse and human tissue-engineered small intestine grew into an appropriately polarized sphere of intact epithelium facing a lumen, contiguous with supporting mesenchyme, muscle, and stem/progenitor cells. The epithelium demonstrated major ultrastructural components, including tight junctions and microvilli, transporters, and functional brush-border and digestive enzymes. This study demonstrates that tissue-engineered small intestine possesses a well-differentiated epithelium with intact ion transporters/channels, functional brush-border enzymes, and similar ultrastructural components to native tissue, including progenitor cells, whether derived from mouse or human cells.


Development | 2011

FGF10 controls the patterning of the tracheal cartilage rings via Shh

Frederic G. Sala; Pierre-Marie Del Moral; Caterina Tiozzo; Denise Al Alam; David Warburton; Tracy C. Grikscheit; Jacqueline M. Veltmaat; Saverio Bellusci

During embryonic development, appropriate dorsoventral patterning of the trachea leads to the formation of periodic cartilage rings from the ventral mesenchyme and continuous smooth muscle from the dorsal mesenchyme. In this work, we have investigated the role of two crucial morphogens, fibroblast growth factor 10 and sonic hedgehog, in the formation of periodically alternating cartilaginous and non-cartilaginous domains in the ventral mesenchyme. Using a combination of gain- and loss-of-function approaches for FGF10 and SHH, we demonstrate that precise spatio-temporal patterns and appropriate levels of expression of these two signaling molecules in the ventral area are crucial between embryonic day 11.5 and 13.5 for the proper patterning of the cartilage rings. We conclude that the expression level of FGF10 in the mesenchyme has to be within a critical range to allow for periodic expression of Shh in the ventral epithelium, and consequently for the correct patterning of the cartilage rings. We propose that disturbed balances of Fgf10 and Shh may explain a subset of human tracheomalacia without tracheo-esophageal fistula or tracheal atresia.


Journal of Surgical Research | 2011

Murine Tissue-Engineered Stomach Demonstrates Epithelial Differentiation

Allison L. Speer; Frederic G. Sala; Jamil A. Matthews; Tracy C. Grikscheit

BACKGROUND Gastric cancer remains the second largest cause of cancer-related mortality worldwide. Postgastrectomy morbidity is considerable and quality of life is poor. Tissue-engineered stomach is a potential replacement solution to restore adequate food reservoir and gastric physiology. In this study, we performed a detailed investigation of the development of tissue-engineered stomach in a mouse model, specifically evaluating epithelial differentiation, proliferation, and the presence of putative stem cell markers. MATERIALS AND METHODS Organoid units were isolated from <3 wk-old mouse glandular stomach and seeded onto biodegradable scaffolds. The constructs were implanted into the omentum of adult mice. Implants were harvested at designated time points and analyzed with histology and immunohistochemistry. RESULTS Tissue-engineered stomach grows as an expanding sphere with a simple columnar epithelium organized into gastric glands and an adjacent muscularis. The regenerated gastric epithelium demonstrates differentiation of all four cell types: mucous, enteroendocrine, chief, and parietal cells. Tissue-engineered stomach epithelium proliferates at a rate comparable to native glandular stomach and expresses two putative stem cell markers: DCAMKL-1 and Lgr5. CONCLUSIONS This study demonstrates the successful generation of tissue-engineered stomach in a mouse model for the first time. Regenerated gastric epithelium is able to appropriately proliferate and differentiate. The generation of murine tissue-engineered stomach is a necessary advance as it provides the transgenic tools required to investigate the molecular and cellular mechanisms of this regenerative process. Delineating the mechanism of how tissue-engineered stomach develops in vivo is an important precursor to its use as a human stomach replacement therapy.


Journal of Surgical Research | 2009

WNT5A Knock-Out Mouse As A New Model of Anorectal Malformation

Cindy C. Tai; Frederic G. Sala; Henri R. Ford; Kasper S. Wang; Changgong Li; Parviz Minoo; Tracy C. Grikscheit; Saverio Bellusci

BACKGROUND Anorectal malformations (ARM) represent a variety of congenital disorders that involve abnormal termination of the anorectum. Mutations in Shh signaling and Fgf10 produce a variety of ARM phenotypes. Wnt signaling has been shown to be crucial during gastrointestinal development. We therefore hypothesized that Wnt5a may play a role in anorectal development. METHODS Wild type (WT), Wnt5a(+/-) and Wnt5a(-/-) embryos were harvested from timed pregnant mice from E15.5 to E18.5, and analyzed for anorectal phenotype. Tissues were processed for whole-mount in situ hybridization and histology. RESULTS Wnt5a is expressed in the embryonic WT colon and rectum. Wnt5a(-/-) mutants exhibit multiple deformities including anorectal malformation. A fistula between the urinary and intestinal tracts can be identified as early as E15.5. By E18.5, the majority of the Wnt5a(-/-) mutants display a blind-ending pouch of the distal gut. CONCLUSIONS The expression pattern of Wnt5a and the ARM phenotype seen in Wnt5a(-/-) mutants demonstrate the critical role of Wnt5a during anorectal development. This study establishes a new model of ARM involving the Wnt5a pathway.

Collaboration


Dive into the Frederic G. Sala's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tracy C. Grikscheit

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Allison L. Speer

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

David Warburton

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Erik R. Barthel

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Stijn De Langhe

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel E. Levin

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Jamil A. Matthews

Children's Hospital Los Angeles

View shared research outputs
Top Co-Authors

Avatar

Pierre-Marie Del Moral

Children's Hospital Los Angeles

View shared research outputs
Researchain Logo
Decentralizing Knowledge