Tracy C. Grikscheit
Children's Hospital Los Angeles
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Tracy C. Grikscheit.
Cell | 2015
Daniel L. Worthley; Michael Churchill; Jocelyn T. Compton; Yagnesh Tailor; Meenakshi Rao; Yiling Si; Daniel E. Levin; Matthew G. Schwartz; Aysu Uygur; Yoku Hayakawa; Stefanie Gross; Bernhard W. Renz; Wanda Setlik; Ashley N. Martinez; Xiaowei Chen; Saqib Nizami; Heon Goo Lee; H. Paco Kang; Jon-Michael Caldwell; Samuel Asfaha; C. Benedikt Westphalen; Trevor A. Graham; Guangchun Jin; Karan Nagar; Hongshan Wang; Mazen A. Kheirbek; Alka Kolhe; Jared Carpenter; Mark A. Glaire; Abhinav Nair
The stem cells that maintain and repair the postnatal skeleton remain undefined. One model suggests that perisinusoidal mesenchymal stem cells (MSCs) give rise to osteoblasts, chondrocytes, marrow stromal cells, and adipocytes, although the existence of these cells has not been proven through fate-mapping experiments. We demonstrate here that expression of the bone morphogenetic protein (BMP) antagonist gremlin 1 defines a population of osteochondroreticular (OCR) stem cells in the bone marrow. OCR stem cells self-renew and generate osteoblasts, chondrocytes, and reticular marrow stromal cells, but not adipocytes. OCR stem cells are concentrated within the metaphysis of long bones not in the perisinusoidal space and are needed for bone development, bone remodeling, and fracture repair. Grem1 expression also identifies intestinal reticular stem cells (iRSCs) that are cells of origin for the periepithelial intestinal mesenchymal sheath. Grem1 expression identifies distinct connective tissue stem cells in both the bone (OCR stem cells) and the intestine (iRSCs).
Annals of Surgery | 2004
Tracy C. Grikscheit; Aleem Siddique; Erin R. Ochoa; Ashok Srinivasan; Eben Alsberg; Richard A. Hodin; Joseph P. Vacanti
Objective:Rescue with tissue-engineered small intestine (TESI) after massive small bowel resection (MSBR). Summary Background Data:Short bowel syndrome is a morbid product of massive small bowel resection. We report the first replacement of a vital organ by tissue engineering with TESI after MSBR. Methods:Ten male Lewis rats underwent TESI implantation with green fluorescent protein (GFP)-marked cells (TESI+, n = 5) or sham laparotomy (TESI−, n = 5) followed by MSBR. Side-to-side anastomosis of TESI to proximal small intestine was performed or omitted. TESIØ animals underwent implantation of engineered intestine with no further surgery. Weights were measured QOD until day 40. Transit times were measured. DNA assay was performed with computer morphometry. Northern blots of RNA were probed for intestinal alkaline phosphatase (IAP) and villin. Hematoxylin and eosin, S100, and smooth muscle actin immunohistochemistry were performed. Blood was collected at sacrifice. Results:All 10 rats initially lost then regained weight. The initial rate of weight loss was higher in TESI+ versus TESI−, but the nadir was reached a week earlier with more rapid weight gain subsequently to 98% preoperative weight on day 40 in animals with engineered intestine versus 76% (P < 0.03). Serum B12 was higher at 439 pg/mL versus 195.4 pg/mL. IAP mRNA appeared greater in TESI+ than TESIØ, with constant villin levels. Histology revealed appropriate architecture including nerve. GFP labeling persisted. Conclusions:Anastomosis of TESI significantly improved postoperative weight and B12 absorption after MSBR. IAP, a marker of differentiation in intestinal epithelium, is present in TESI, and GFP labeling was accomplished.
Journal of Surgical Research | 2009
Frederic G. Sala; Shaun M. Kunisaki; Erin R. Ochoa; Joseph P. Vacanti; Tracy C. Grikscheit
BACKGROUND Tissue-engineered small intestine, stomach, large intestine, esophagus, and gastroesophageal (GE) junction have been successfully formed from syngeneic cells, and employed as a rescue therapy in a small animal model. The purpose of this study is to determine if engineered intestine and stomach could be generated in an autologous, preclinical large animal model, and to identify if the tissue-engineered intestine retained features of an intact stem cell niche. METHODS A short segment of jejunum or stomach was resected from 6-wk-old Yorkshire swine. Organoid units, multicellular clusters with predominantly epithelial content, were generated and loaded onto biodegradable scaffold tubes. The constructs were then implanted intraperitoneally in the autologous host. Seven wk later, all implants were harvested and analyzed using histology and immunohistochemistry techniques. RESULTS Autologous engineered small intestine and stomach formed. Tissue-engineered intestinal architecture replicated that of native intestine. Histology revealed tissue-engineered small intestinal mucosa composed of a columnar epithelium with all differentiated intestinal cell types adjacent to an innervated muscularis mucosae. Intestinal subepithelial myofibroblasts, specialized cells that participate in the stem cell niche formation, were identified. Moreover, cells positive for the putative intestinal stem cell marker, doublecortin and CaM kinase-like-1 (DCAMKL-1) expression were identified at the base of the crypts. Finally, tissue-engineered stomach also formed with antral-type mucosa (mucus cells and surface foveolar cells) and a muscularis. CONCLUSION We successfully generated tissue-engineered intestine with correct architecture, including features of an intact stem cell niche, in the pig model. To our knowledge, this is the first demonstration in which tissue-engineered intestine was successfully generated in an autologous manner in an animal model, which may better emulate a human host and the intended therapeutic pathway for humans.
The Journal of Thoracic and Cardiovascular Surgery | 2003
Tracy C. Grikscheit; Erin R. Ochoa; Ashok Srinivasan; Henning A. Gaissert; Joseph P. Vacanti
OBJECTIVES We proposed to fabricate a tissue-engineered esophagus and to use it for replacement of the abdominal esophagus. METHODS Esophagus organoid units, mesenchymal cores surrounded by epithelial cells, were isolated from neonatal or adult rats and paratopically transplanted on biodegradable polymer tubes, which were implanted in syngeneic hosts. Four weeks later, the tissue-engineered esophagus was either harvested or anastomosed as an onlay patch or total interposition graft. Green Fluorescent Protein labeling by means of viral infection of the organoid units was performed before implantation. Histology and immunohistochemical detection of the antigen alpha-actin smooth muscle were performed. RESULTS Tissue-engineered esophagus grows in sufficient quantity for interposition grafting. Histology reveals a complete esophageal wall, including mucosa, submucosa, and muscularis propria, which was confirmed by means of immunohistochemical staining for alpha-actin smooth muscle. Tissue-engineered esophagus architecture was maintained after interposition or use as a patch, and animals gained weight on a normal diet. Green Fluorescent Protein-labeled tissue-engineered esophagus preserved its fluorescent label, proving the donor origin of the tissue-engineered esophagus. CONCLUSIONS Tissue-engineered esophagus resembles the native esophagus and maintains normal histology in anastomosis, with implications for therapy of long-segment esophageal tissue loss caused by congenital absence, surgical excision, or trauma.
Annals of Surgery | 2003
Tracy C. Grikscheit; Erin R. Ochoa; Anthony P. Ramsanahie; Eben Alsberg; David J. Mooney; Edward E. Whang; Joseph P. Vacanti
Objective Novel production and in vitro characterization of tissue engineered colon. Summary Background Data The colon provides important functions of short chain fatty acid production, sodium and water absorption, and storage. We report the first instance of tissue-engineered colon (TEC) production from autologous cells and its in vitro characterization. Methods Organoid units, mesenchymal cell cores surrounded by a polarized epithelia derived from full thickness sigmoid colon dissection from neonatal Lewis rats, adult rats, and tissue engineered colon itself, were implanted on a polymer scaffold into the omentum of syngeneic hosts. TEC was either anastomosed at 4 weeks or excised for Üssing chamber studies or histology, immunohistochemistry, and terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-digoxigenin nick end labeling assay. Results TEC was generated by 100% of all animals without regard to tissue source, the first instance of engineered intestine from adult cells or an engineered tissue. TEC architecture is identical to native with muscularis propria staining for actin, acetylcholinesterase detected in a linear distribution in the lamina propria, S100-positive cells, ganglion cells, and a terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate-digoxigenin nick end labeling assay similar to native colon. Üssing chamber data indicated in vitro function consistent with mature colonocytes, and a positive short circuit current response to theophylline indicating intact ion transfer. TEM showed normal microarchitecture. Colon architecture was maintained in anastomosis with gross visualization of fluid uptake. Conclusions TEC can be successfully produced with fidelity to native architecture and in vitro function from neonatal syngeneic tissue, adult tissue, and TEC itself.
Nature | 2016
Faranak Fattahi; Julius A. Steinbeck; Sonja Kriks; Jason Tchieu; Bastian Zimmer; Sarah Kishinevsky; Nadja Zeltner; Yvonne Mica; Wael El-Nachef; Huiyong Zhao; Elisa de Stanchina; Michael D. Gershon; Tracy C. Grikscheit; Shuibing Chen; Lorenz Studer
The enteric nervous system (ENS) is the largest component of the autonomic nervous system, with neuron numbers surpassing those present in the spinal cord. The ENS has been called the ‘second brain’ given its autonomy, remarkable neurotransmitter diversity and complex cytoarchitecture. Defects in ENS development are responsible for many human disorders including Hirschsprung disease (HSCR). HSCR is caused by the developmental failure of ENS progenitors to migrate into the gastrointestinal tract, particularly the distal colon. Human ENS development remains poorly understood owing to the lack of an easily accessible model system. Here we demonstrate the efficient derivation and isolation of ENS progenitors from human pluripotent stem (PS) cells, and their further differentiation into functional enteric neurons. ENS precursors derived in vitro are capable of targeted migration in the developing chick embryo and extensive colonization of the adult mouse colon. The in vivo engraftment and migration of human PS-cell-derived ENS precursors rescue disease-related mortality in HSCR mice (Ednrbs-l/s-l), although the mechanism of action remains unclear. Finally, EDNRB-null mutant ENS precursors enable modelling of HSCR-related migration defects, and the identification of pepstatin A as a candidate therapeutic target. Our study establishes the first, to our knowledge, human PS-cell-based platform for the study of human ENS development, and presents cell- and drug-based strategies for the treatment of HSCR.
American Journal of Physiology-gastrointestinal and Liver Physiology | 2015
Christa N. Grant; Salvador Garcia Mojica; Frederic G. Sala; J. Ryan Hill; Daniel E. Levin; Allison L. Speer; Erik R. Barthel; Hiroyuki Shimada; Nicholas C. Zachos; Tracy C. Grikscheit
Short bowel syndrome (SBS) is a devastating condition in which insufficient small intestinal surface area results in malnutrition and dependence on intravenous parenteral nutrition. There is an increasing incidence of SBS, particularly in premature babies and newborns with congenital intestinal anomalies. Tissue-engineered small intestine (TESI) offers a therapeutic alternative to the current standard treatment, intestinal transplantation, and has the potential to solve its biggest challenges, namely donor shortage and life-long immunosuppression. We have previously demonstrated that TESI can be generated from mouse and human small intestine and histologically replicates key components of native intestine. We hypothesized that TESI also recapitulates native small intestine function. Organoid units were generated from mouse or human donor intestine and implanted into genetically identical or immunodeficient host mice. After 4 wk, TESI was harvested and either fixed and paraffin embedded or immediately subjected to assays to illustrate function. We demonstrated that both mouse and human tissue-engineered small intestine grew into an appropriately polarized sphere of intact epithelium facing a lumen, contiguous with supporting mesenchyme, muscle, and stem/progenitor cells. The epithelium demonstrated major ultrastructural components, including tight junctions and microvilli, transporters, and functional brush-border and digestive enzymes. This study demonstrates that tissue-engineered small intestine possesses a well-differentiated epithelium with intact ion transporters/channels, functional brush-border enzymes, and similar ultrastructural components to native tissue, including progenitor cells, whether derived from mouse or human cells.
Development | 2011
Frederic G. Sala; Pierre-Marie Del Moral; Caterina Tiozzo; Denise Al Alam; David Warburton; Tracy C. Grikscheit; Jacqueline M. Veltmaat; Saverio Bellusci
During embryonic development, appropriate dorsoventral patterning of the trachea leads to the formation of periodic cartilage rings from the ventral mesenchyme and continuous smooth muscle from the dorsal mesenchyme. In this work, we have investigated the role of two crucial morphogens, fibroblast growth factor 10 and sonic hedgehog, in the formation of periodically alternating cartilaginous and non-cartilaginous domains in the ventral mesenchyme. Using a combination of gain- and loss-of-function approaches for FGF10 and SHH, we demonstrate that precise spatio-temporal patterns and appropriate levels of expression of these two signaling molecules in the ventral area are crucial between embryonic day 11.5 and 13.5 for the proper patterning of the cartilage rings. We conclude that the expression level of FGF10 in the mesenchyme has to be within a critical range to allow for periodic expression of Shh in the ventral epithelium, and consequently for the correct patterning of the cartilage rings. We propose that disturbed balances of Fgf10 and Shh may explain a subset of human tracheomalacia without tracheo-esophageal fistula or tracheal atresia.
Journal of Surgical Research | 2011
Allison L. Speer; Frederic G. Sala; Jamil A. Matthews; Tracy C. Grikscheit
BACKGROUND Gastric cancer remains the second largest cause of cancer-related mortality worldwide. Postgastrectomy morbidity is considerable and quality of life is poor. Tissue-engineered stomach is a potential replacement solution to restore adequate food reservoir and gastric physiology. In this study, we performed a detailed investigation of the development of tissue-engineered stomach in a mouse model, specifically evaluating epithelial differentiation, proliferation, and the presence of putative stem cell markers. MATERIALS AND METHODS Organoid units were isolated from <3 wk-old mouse glandular stomach and seeded onto biodegradable scaffolds. The constructs were implanted into the omentum of adult mice. Implants were harvested at designated time points and analyzed with histology and immunohistochemistry. RESULTS Tissue-engineered stomach grows as an expanding sphere with a simple columnar epithelium organized into gastric glands and an adjacent muscularis. The regenerated gastric epithelium demonstrates differentiation of all four cell types: mucous, enteroendocrine, chief, and parietal cells. Tissue-engineered stomach epithelium proliferates at a rate comparable to native glandular stomach and expresses two putative stem cell markers: DCAMKL-1 and Lgr5. CONCLUSIONS This study demonstrates the successful generation of tissue-engineered stomach in a mouse model for the first time. Regenerated gastric epithelium is able to appropriately proliferate and differentiate. The generation of murine tissue-engineered stomach is a necessary advance as it provides the transgenic tools required to investigate the molecular and cellular mechanisms of this regenerative process. Delineating the mechanism of how tissue-engineered stomach develops in vivo is an important precursor to its use as a human stomach replacement therapy.
Journal of Surgical Research | 2009
Cindy C. Tai; Frederic G. Sala; Henri R. Ford; Kasper S. Wang; Changgong Li; Parviz Minoo; Tracy C. Grikscheit; Saverio Bellusci
BACKGROUND Anorectal malformations (ARM) represent a variety of congenital disorders that involve abnormal termination of the anorectum. Mutations in Shh signaling and Fgf10 produce a variety of ARM phenotypes. Wnt signaling has been shown to be crucial during gastrointestinal development. We therefore hypothesized that Wnt5a may play a role in anorectal development. METHODS Wild type (WT), Wnt5a(+/-) and Wnt5a(-/-) embryos were harvested from timed pregnant mice from E15.5 to E18.5, and analyzed for anorectal phenotype. Tissues were processed for whole-mount in situ hybridization and histology. RESULTS Wnt5a is expressed in the embryonic WT colon and rectum. Wnt5a(-/-) mutants exhibit multiple deformities including anorectal malformation. A fistula between the urinary and intestinal tracts can be identified as early as E15.5. By E18.5, the majority of the Wnt5a(-/-) mutants display a blind-ending pouch of the distal gut. CONCLUSIONS The expression pattern of Wnt5a and the ARM phenotype seen in Wnt5a(-/-) mutants demonstrate the critical role of Wnt5a during anorectal development. This study establishes a new model of ARM involving the Wnt5a pathway.