Frédéric Lopez
French Institute of Health and Medical Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frédéric Lopez.
Journal of Biological Chemistry | 1997
Frédéric Lopez; Jean-Pierre Estève; Louis Buscail; Nathalie Delesque; Nathalie Saint-Laurent; Magali Théveniau; Clara Nahmias; Nicole Vaysse; Christiane Susini
Activation of the somatostatin receptor sst2, a member of the Gi protein-coupled receptor family, results in the stimulation of a protein-tyrosine phosphatase activity involved in the sst2-mediated growth inhibitory signal. Here, we report that SHP-1, a cytoplasmic protein-tyrosine phosphatase containing two Src homology 2 domains constitutively associated with sst2 as evidence by coprecipitation of SHP-1 protein with sst2, in Chinese hamster ovary cells coexpressing sst2 and SHP-1. Activation of sst2 by somatostatin resulted in a rapid dissociation of SHP-1 from sst2 accompanied by an increase of SHP-1 activity. SHP-1 was phosphorylated on tyrosine in control cells and somatostatin induced a rapid and transient dephosphorylation on tyrosine residues of the enzyme. Stimulation of SHP-1 activity by somatostatin was abolished by pertussis toxin pretreatment of cells. Giα3 was specifically immunoprecipitated by anti-sst2 and anti-SHP-1 antibodies, and somatostatin induced a rapid dissociation of Giα3 from sst2, suggesting that Giα3 may be involved in the sst2·SHP-1 complexes. Finally, somatostatin inhibited the proliferation of cells coexpressing sst2 and SHP-1, and this effect was suppressed in cells coexpressing sst2 and the catalytic inactive SHP-1 (C453S mutant). Our data identify SHP-1 as the tyrosine phosphatase associated with sst2 and demonstrate that this enzyme may be an initial key transducer of the antimitogenic signaling mediated by sst2.
Journal of Immunology | 2004
Tony Avril; Helen Floyd; Frédéric Lopez; Eric Vivier; Paul R. Crocker
Siglec-7 and Siglec-9 are two members of the recently characterized CD33-related Siglec family of sialic acid binding proteins and are both expressed on human monocytes and NK cells. In addition to their ability to recognize sialic acid residues, these Siglecs display two conserved tyrosine-based motifs in their cytoplasmic region similar to those found in inhibitory receptors of the immune system. In the present study, we use the rat basophilic leukemia (RBL) model to examine the potential of Siglecs-7 and -9 to function as inhibitory receptors and investigate the molecular basis for this. We first demonstrate that Siglecs-7 and -9 are able to inhibit the FcεRI-mediated serotonin release from RBL cells following co-crosslinking. In addition, we show that under these conditions or after pervanadate treatment, Siglecs-7 and -9 associate with the Src homology region 2 domain-containing phosphatases (SHP), SHP-1 and SHP-2, both in immunoprecipitation and in fluorescence microscopy experiments using GFP fusion proteins. We then show by site-directed mutagenesis that the membrane-proximal tyrosine motif is essential for the inhibitory function of both Siglec-7 and -9, and is also required for tyrosine phosphorylation and recruitment of SHP-1 and SHP-2 phosphatases. Finally, mutation of the membrane-proximal motif increased the sialic acid binding activity of Siglecs-7 and -9, raising the possibility that “inside-out” signaling may occur to regulate ligand binding.
Journal of Physiology-paris | 2000
Geraldine Ferjoux; Corinne Bousquet; Pierre Cordelier; Naoual Linda Benali; Frédéric Lopez; Philippe Rochaix; Louis Buscail; Christiane Susini
Somatostatin acts as an inhibitory peptide of various secretory and proliferative responses. Its effects are mediated by a family of G-protein-coupled receptors (sst1-5) that can couple to diverse signal transduction pathways such as inhibition of adenylate cyclase and guanylate cyclase, modulation of ionic conductance channels, and protein dephosphorylation. The five receptors bind the natural peptide with high affinity but only sst2, sst5 and sst3 bind the short synthetic analogues. Somatostatin negatively regulates the growth of various normal and tumour cells. This effect is mediated indirectly through inhibition of secretion of growth-promoting factors, angiogenesis and modulation of the immune system. Somatostatin can also act directly through sst receptors present on target cells. The five receptors are expressed in various normal and tumour cells, the expression of each receptor being receptor subtype and cell type specific. According to the receptor subtypes, distinct signal transduction pathways are involved in the antiproliferative action of somatostatin. Sst1, 4 and 5 modulate the MAP kinase pathway and induce G1 cell cycle arrest. Sst3 and sst2 promote apoptosis by p53-dependent and -independent mechanisms, respectively.
ChemBioChem | 2005
Isabelle M. Dixon; Frédéric Lopez; Jean-Pierre Estève; Agueda M. Tejera; Maria A. Blasco; Geneviève Pratviel; Bernard Meunier
The capacity of G‐quadruplex ligands to stabilize four‐stranded DNA makes them able to inhibit telomerase, which is involved in tumour cell proliferation. A series of cationic metalloporphyrin derivatives was prepared by making variations on a meso‐tetrakis(4‐N‐methyl‐pyridiniumyl)porphyrin skeleton (TMPyP). The DNA binding properties of nickel(II) and manganese(III) porphyrins were studied by surface plasmon resonance, and the capacity of the nickel porphyrins to inhibit telomerase was tested in a TRAP assay. The nature of the metal influences the kinetics (the process is faster for Ni than for Mn) and the mode of interaction (stacking or external binding). The chemical alterations did not lead to increased telomerase inhibition. The best selectivity for G‐quadruplex DNA was observed for Mn‐TMPyP, which has a tenfold preference for quadruplex over duplex.
Journal of Biological Chemistry | 2008
Damien Bessière; Chrystelle Lacroix; Sébastien Campagne; Vincent Ecochard; Valérie Guillet; Lionel Mourey; Frédéric Lopez; Jerzy Czaplicki; Pascal Demange; Alain Milon; Jean-Philippe Girard; Virginie Gervais
THAP1, the founding member of a previously uncharacterized large family of cellular proteins (THAP proteins), is a sequence-specific DNA-binding factor that has recently been shown to regulate cell proliferation through modulation of pRb/E2F cell cycle target genes. THAP1 shares its DNA-binding THAP zinc finger domain with Drosophila P element transposase, zebrafish E2F6, and several nematode proteins interacting genetically with the retinoblastoma protein pRb. In this study, we report the three-dimensional structure and structure-function relationships of the THAP zinc finger of human THAP1. Deletion mutagenesis and multidimensional NMR spectroscopy revealed that the THAP domain of THAP1 is an atypical zinc finger of ∼80 residues, distinguished by the presence between the C2CH zinc coordinating residues of a short antiparallel β-sheet interspersed by a long loop-helix-loop insertion. Alanine scanning mutagenesis of this loop-helix-loop motif resulted in the identification of a number of critical residues for DNA recognition. NMR chemical shift perturbation analysis was used to further characterize the residues involved in DNA binding. The combination of the mutagenesis and NMR data allowed the mapping of the DNA binding interface of the THAP zinc finger to a highly positively charged area harboring multiple lysine and arginine residues. Together, these data represent the first structure-function analysis of a functional THAP domain, with demonstrated sequence-specific DNA binding activity. They also provide a structural framework for understanding DNA recognition by this atypical zinc finger, which defines a novel family of cellular factors linked to cell proliferation and pRb/E2F cell cycle pathways in humans, fish, and nematodes.
The EMBO Journal | 2006
Corinne Bousquet; Julie Guillermet-Guibert; Nathalie Saint-Laurent; Elodie Archer-Lahlou; Frédéric Lopez; Marjorie Fanjul; Audrey Ferrand; Daniel Fourmy; Carole Pichereaux; Bernard Monsarrat; Lucien Pradayrol; Jean-Pierre Estève; Christiane Susini
Phosphatidylinositol 3‐kinase (PI3K) regulates many cellular functions including growth and survival, and its excessive activation is a hallmark of cancer. Somatostatin, acting through its G protein‐coupled receptor (GPCR) sst2, has potent proapoptotic and anti‐invasive activities on normal and cancer cells. Here, we report a novel mechanism for inhibiting PI3K activity. Somatostatin, acting through sst2, inhibits PI3K activity by disrupting a pre‐existing complex comprising the sst2 receptor and the p85 PI3K regulatory subunit. Surface plasmon resonance and molecular modeling identified the phosphorylated‐Y71 residue of a p85‐binding pYXXM motif in the first sst2 intracellular loop, and p85 COOH‐terminal SH2 as direct interacting domains. Somatostatin‐mediated dissociation of this complex as well as p85 tyrosine dephosphorylation correlates with sst2 tyrosine dephosphorylation on the Y71 residue. Mutating sst2‐Y71 disabled sst2 to interact with p85 and somatostatin to inhibit PI3K, consequently abrogating sst2s ability to suppress cell survival and tumor growth. These results provide the first demonstration of a physical interaction between a GPCR and p85, revealing a novel mechanism for negative regulation by ligand‐activated GPCR of PI3K‐dependent survival pathways, which may be an important molecular target for antineoplastic therapy.
The FASEB Journal | 2001
Frédéric Lopez; Geraldine Ferjoux; Pierre Cordelier; Nathalie Saint-Laurent; Jean-Pierre Estève; Nicole Vaysse; Louis Buscail; Christiane Susini
Somatostatin receptor sst2 is an inhibitory G protein‐coupled receptor, which inhibits normal and tumor cell growth by a mechanism involving the tyrosine phosphatase SHP‐1. We reported previously that SHP‐1 associates transiently with and is activated by sst2 and is a critical component for sst2 growth inhibitory signaling. Here, we demonstrate that in Chinese hamster ovary cells expressing sst2, SHP‐1 is associated at the basal level with the neuronal nitric oxide synthase (nNOS). Following sst2 activation by the somatostatin analog RC‐160, SHP‐1 rapidly recruits nNOS tyrosine dephosphorylates and activates it. The resulting NO activates guanylate cyclase and inhibits cell proliferation. Coexpression of a catalytically inactive SHP‐1 mutant with sst2 blocks RC‐160‐induced nNOS dephosphorylation and activation, as well as guanylate cyclase activation. In mouse pancreatic acini, RC‐160 treatment reduces nNOS tyrosine phosphorylation accompanied by an increase of its activity. By opposition, in acini from viable motheaten (mev/mev) mice, which express a markedly inactive SHP‐1, RC‐160 has no effect on nNOS activity. Finally, expression of a dominant‐negative form of nNOS prevents both RC‐160‐induced p27 up‐regulation and cell proliferation inhibition. We therefore identified nNOS as a novel SHP‐1 substrate critical for sst2‐induced cell‐growth arrest.
Metabolism-clinical and Experimental | 1996
Frédéric Lopez; Jean-Pierre Estève; Louis Buscail; Nathalie Delesque; Nathalie Saint-Laurent; Nicole Vaysse; Christiane Susini
A protein of 66 kd immunoreactive to anti-tyrosine phosphatase (PTP1C) antibodies coeluted with, and so may be associated with, somatostatin receptors (ssts) from rat pancreatic membranes. Also, anti-PTP1C antibodies immunoprecipitated functional ssts from pancreatic membranes, suggesting a PTP1C protein can associate with ssts at the membrane level. Somatostatin analog RC 160 had good affinity for sst2,3 and sst5 (IC50 = 0.2, 0.1, and 21 nmol/L) and low affinity for sst1 and sst4 (IC50 = 200 and 620 nmol/L), and induced rapid dose-dependent stimulation of PTP activity (maximal at 1 nmol/L and half maximal at 5 pmol/L) in NIH3T3 and CHO cells expressing sst2, with similar results for sst1, but no stimulation with sst3,4 or sst5. Treatment of cells expressing sst2 with RC 160 for 24 hours inhibited serum- or growth factor-induced cell proliferation dose-dependently (maximal at 1 nmol/L, half maximal at 6 to 53 pmol/L RC 160). In cells expressing sst1, weak inhibition of fibroblast growth factor 2-induced NIH3T3 cell proliferation was provoked by somatostatin analogs (> 10 nmol/L). The good correlation between inhibition of somatostatin binding, stimulation of PTP activity, and inhibition of cell proliferation implicates a PTP in growth inhibition mediated by sst2 and sst1.
Biochimica et Biophysica Acta | 2009
Marta Zalewska; Agata Kochman; Jean-Pierre Estève; Frédéric Lopez; Karima Chaoui; Christiane Susini; Andrzej Ożyhar; Marian Kochman
Juvenile hormone (JH) controls insect development, metamorphosis and reproduction. In insect hemolymph a significant proportion of JH is bound to juvenile hormone binding protein (JHBP), which serves as a carrier supplying the hormone to the target tissues. To shed some light on JHBP passage within insect tissues, the interaction of this carrier with other proteins from Galleria mellonella (Lepidoptera) was investigated. Our studies revealed the presence of JHBP within the tracheal epithelium and fat body cells in both the membrane and cytoplasmic sections. We found that the interaction between JHBP and membrane proteins occurs with saturation kinetics and is specific and reversible. ATP synthase was indicated as a JHBP membrane binding protein based upon SPR-BIA and MS analysis. It was found that in G. mellonella fat body, this enzyme is present in mitochondrial fraction, plasma membranes and cytosol as well. In the model system containing bovine F(1) ATP synthase and JHBP, the interaction between these two components occurs with K(d)=0.86 nM. In hemolymph we detected JHBP binding to apolipophorin, arylphorin and hexamerin. These results provide the first demonstration of the physical interaction of JHBP with membrane and hemolymph proteins which can be involved in JHBP molecule traffic.
Biology of Reproduction | 2001
Isabelle Goddard; Sylvian Bauer; Alain Gougeon; Frédéric Lopez; Nathalie Giannetti; Christiane Susini; Mohamed Benahmed; Slavica Krantic
Abstract Immature porcine Sertoli cells have been reported to be targets for the regulatory peptide somatostatin (SRIF), which inhibits the basal and FSH-induced proliferation of Sertoli cells through a decrease of cAMP production. In the present study, we show that SRIF inhibits both basal and FSH-stimulated expression of the stem cell factor (SCF), a Sertoli cell-specific gene. The SRIF-mediated inhibition of forskolin-triggered, but not of 8-bromoadenosine-cAMP-triggered, SCF mRNA expression demonstrates the involvement of adenylyl cyclase in underlying peptide actions. Moreover, these effects require functional coupling of specific plasma membrane receptors to adenylyl cyclase via inhibitory G proteins, because pertussis toxin prevents SRIF-mediated inhibition of SCF mRNA expression. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assays suggest the involvement of sst2 receptors in SRIF actions on Sertoli cells. The biological relevance of these data is supported by an SRIF-mediated decrease in SCF-induced incorporation of [3H]thymidine in isolated seminiferous tubules. In situ hybridization and confocal microscopy show that, in seminiferous tubules only, spermatogonia display both c-kit and sst2 receptors. Taken together, these results suggest that SCF-stimulated DNA synthesis can be inhibited by SRIF in spermatogonia, but not in Sertoli and peritubular cells. Combined RT-PCR and immunohistochemical approaches point toward spermatogonia and Leydig cells as the source of testicular SRIF. These data argue in favor of paracrine/autocrine SRIF actions in testis.