Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederick A. Schroeder is active.

Publication


Featured researches published by Frederick A. Schroeder.


PLOS ONE | 2013

A Selective HDAC 1/2 Inhibitor Modulates Chromatin and Gene Expression in Brain and Alters Mouse Behavior in Two Mood-Related Tests

Frederick A. Schroeder; Michael C. Lewis; Daniel M. Fass; Florence F. Wagner; Yan-Ling Zhang; Krista M. Hennig; Jennifer Gale; Wen-Ning Zhao; Surya A. Reis; Douglas Barker; Erin Berry-Scott; Sung Won Kim; Elizabeth L. Clore; Jacob M. Hooker; Edward B. Holson; Stephen J. Haggarty; Tracey L. Petryshen

Psychiatric diseases, including schizophrenia, bipolar disorder and major depression, are projected to lead global disease burden within the next decade. Pharmacotherapy, the primary – albeit often ineffective – treatment method, has remained largely unchanged over the past 50 years, highlighting the need for novel target discovery and improved mechanism-based treatments. Here, we examined in wild type mice the impact of chronic, systemic treatment with Compound 60 (Cpd-60), a slow-binding, benzamide-based inhibitor of the class I histone deacetylase (HDAC) family members, HDAC1 and HDAC2, in mood-related behavioral assays responsive to clinically effective drugs. Cpd-60 treatment for one week was associated with attenuated locomotor activity following acute amphetamine challenge. Further, treated mice demonstrated decreased immobility in the forced swim test. These changes are consistent with established effects of clinical mood stabilizers and antidepressants, respectively. Whole-genome expression profiling of specific brain regions (prefrontal cortex, nucleus accumbens, hippocampus) from mice treated with Cpd-60 identified gene expression changes, including a small subset of transcripts that significantly overlapped those previously reported in lithium-treated mice. HDAC inhibition in brain was confirmed by increased histone acetylation both globally and, using chromatin immunoprecipitation, at the promoter regions of upregulated transcripts, a finding consistent with in vivo engagement of HDAC targets. In contrast, treatment with suberoylanilide hydroxamic acid (SAHA), a non-selective fast-binding, hydroxamic acid HDAC 1/2/3/6 inhibitor, was sufficient to increase histone acetylation in brain, but did not alter mood-related behaviors and had dissimilar transcriptional regulatory effects compared to Cpd-60. These results provide evidence that selective inhibition of HDAC1 and HDAC2 in brain may provide an epigenetic-based target for developing improved treatments for mood disorders and other brain disorders with altered chromatin-mediated neuroplasticity.


Neuroscience | 2014

Epigenetic Mechanisms in Mood Disorders: Targeting Neuroplasticity

Daniel M. Fass; Frederick A. Schroeder; Roy H. Perlis; Stephen J. Haggarty

Developing novel therapeutics and diagnostic tools based upon an understanding of neuroplasticity is critical in order to improve the treatment and ultimately the prevention of a broad range of nervous system disorders. In the case of mood disorders, such as major depressive disorder (MDD) and bipolar disorder (BPD), where diagnoses are based solely on nosology rather than pathophysiology, there exists a clear unmet medical need to advance our understanding of the underlying molecular mechanisms and to develop fundamentally new mechanism experimental medicines with improved efficacy. In this context, recent preclinical molecular, cellular, and behavioral findings have begun to reveal the importance of epigenetic mechanisms that alter chromatin structure and dynamically regulate patterns of gene expression that may play a critical role in the pathophysiology of mood disorders. Here, we will review recent advances involving the use of animal models in combination with genetic and pharmacological probes to dissect the underlying molecular mechanisms and neurobiological consequence of targeting this chromatin-mediated neuroplasticity. We discuss evidence for the direct and indirect effects of mood stabilizers, antidepressants, and antipsychotics, among their many other effects, on chromatin-modifying enzymes and on the epigenetic state of defined genomic loci, in defined cell types and in specific regions of the brain. These data, as well as findings from patient-derived tissue, have also begun to reveal alterations of epigenetic mechanisms in the pathophysiology and treatment of mood disorders. We summarize growing evidence supporting the notion that selectively targeting chromatin-modifying complexes, including those containing histone deacetylases (HDACs), provides a means to reversibly alter the acetylation state of neuronal chromatin and beneficially impact neuronal activity-regulated gene transcription and mood-related behaviors. Looking beyond current knowledge, we discuss how high-resolution, whole-genome methodologies, such as RNA-sequencing (RNA-Seq) for transcriptome analysis and chromatin immunoprecipitation-sequencing (ChIP-Seq) for analyzing genome-wide occupancy of chromatin-associated factors, are beginning to provide an unprecedented view of both specific genomic loci as well as global properties of chromatin in the nervous system. These methodologies when applied to the characterization of model systems, including those of patient-derived induced pluripotent cell (iPSC) and induced neurons (iNs), will greatly shape our understanding of epigenetic mechanisms and the impact of genetic variation on the regulatory regions of the human genome that can affect neuroplasticity. Finally, we point out critical unanswered questions and areas where additional data are needed in order to better understand the potential to target mechanisms of chromatin-mediated neuroplasticity for novel treatments of mood and other psychiatric disorders.


Journal of Medicinal Chemistry | 2014

In Vivo Imaging of Histone Deacetylases (HDACs) in the Central Nervous System and Major Peripheral Organs

Changning Wang; Frederick A. Schroeder; Hsiao-Ying Wey; Ronald Borra; Florence F. Wagner; Surya A. Reis; Sung Won Kim; Edward B. Holson; Stephen J. Haggarty; Jacob M. Hooker

Epigenetic enzymes are now targeted to treat the underlying gene expression dysregulation that contribute to disease pathogenesis. Histone deacetylases (HDACs) have shown broad potential in treatments against cancer and emerging data supports their targeting in the context of cardiovascular disease and central nervous system dysfunction. Development of a molecular agent for non-invasive imaging to elucidate the distribution and functional roles of HDACs in humans will accelerate medical research and drug discovery in this domain. Herein, we describe the synthesis and validation of an HDAC imaging agent, [11C]6. Our imaging results demonstrate that this probe has high specificity, good selectivity, and appropriate kinetics and distribution for imaging HDACs in the brain, heart, kidney, pancreas, and spleen. Our findings support the translational potential for [11C]6 for human epigenetic imaging.


Journal of Medicinal Chemistry | 2014

Imaging Evaluation of 5HT2C Agonists, [11C]WAY-163909 and [11C]Vabicaserin, Formed by Pictet–Spengler Cyclization

Ramesh Neelamegam; Tim Hellenbrand; Frederick A. Schroeder; Changning Wang; Jacob M. Hooker

The serotonin subtype 2C (5HT2C) receptor is an emerging and promising drug target to treat several disorders of the human central nervous system. In this current report, two potent and selective 5HT2C full agonists, WAY-163909 (2) and vabicaserin (3), were radiolabeled with carbon-11 via Pictet–Spengler cyclization with [11C]formaldehyde and used in positron emission tomography (PET) imaging. Reaction conditions were optimized to exclude the major source of isotope dilution caused by the previously unknown breakdown of N,N-dimethylformamide (DMF) to formaldehyde at high temperature under mildly acid conditions. In vivo PET imaging was utilized to evaluate the pharmacokinetics and distribution of the carbon-11 labeled 5HT2C agonists. Both radiolabeled molecules exhibit high blood–brain barrier (BBB) penetration and nonspecific binding, which was unaltered by preadministration of the unlabeled agonist. Our work demonstrates that Pictet–Spengler cyclization can be used to label drugs with carbon-11 to study their pharmacokinetics and for evaluation as PET radiotracers.


Neuroscience | 2014

Visualizing epigenetics: Current advances and advantages in HDAC PET imaging techniques

Changning Wang; Frederick A. Schroeder; Jacob M. Hooker

Abnormal gene regulation as a consequence of flawed epigenetic mechanisms may be central to the initiation and persistence of many human diseases. However, the association of epigenetic dysfunction with disease and the development of therapeutic agents for treatment are slow. Developing new methodologies used to visualize chromatin-modifying enzymes and their function in the human brain would be valuable for the diagnosis of brain disorders and drug discovery. We provide an overview of current invasive and noninvasive techniques for measuring expression and functions of chromatin-modifying enzymes in the brain, emphasizing tools applicable to histone deacetylase (HDAC) enzymes as a leading example. The majority of current techniques are invasive and difficult to translate to what is happening within a human brain in vivo. However, recent progress in molecular imaging provides new, noninvasive ways to visualize epigenetics in the human brain. Neuroimaging tool development presents a unique set of challenges in order to identify and validate CNS radiotracers for HDACs and other histone-modifying enzymes. We summarize advances in the effort to image HDACs and HDAC inhibitory effects in the brain using positron emission tomography (PET) and highlight generalizable techniques that can be adapted to investigate other specific components of epigenetic machinery. Translational tools like neuroimaging by PET and magnetic resonance imaging provide the best way to link our current understanding of epigenetic changes with in vivo function in normal and diseased brains. These tools will be a critical addition to ex vivo methods to evaluate - and intervene - in CNS dysfunction.


ACS Chemical Neuroscience | 2016

A Novel Radiotracer for Imaging Monoacylglycerol Lipase in the Brain Using Positron Emission Tomography

Changning Wang; Michael S. Placzek; Genevieve C. Van de Bittner; Frederick A. Schroeder; Jacob M. Hooker

Monoacylglycerol lipase (MAGL) is a serine hydrolase that hydrolyzes monoacylglycerols to glycerol and fatty acid and plays an important role in neuroinflammation. MAGL inhibitors are a class of molecules with therapeutic potential for human diseases of the central nervous system (CNS), in areas such as pain and inflammation, immunological disorders, and neurological and psychiatric conditions. Development of a noninvasive imaging probe would elucidate the distribution and functional roles of MAGL in the brain and accelerate medical research and drug discovery in this domain. Herein, we describe the synthesis and pilot rodent imaging of a novel MAGL imaging agent, [(11)C]SAR127303. Our imaging results demonstrate the high specificity, good selectivity, and appropriate kinetics and distribution of [(11)C]SAR127303, validating its utility for imaging MAGL in the brain. Our findings support the translational potential for human CNS MAGL imaging.


Neuroscience Letters | 2013

FDG-PET imaging reveals local brain glucose utilization is altered by class I histone deacetylase inhibitors

Frederick A. Schroeder; Daniel B. Chonde; Misha M. Riley; Christian K. Moseley; Michael L. Granda; Colin M. Wilson; Florence F. Wagner; Yan-Ling Zhang; Jennifer Gale; Edward B. Holson; Stephen J. Haggarty; Jacob M. Hooker

The purpose of this work--the first of its kind--was to evaluate the impact of chronic selective histone deacetylase (HDAC) inhibitor treatment on brain activity using uptake of the radioligand (18)F-fluorodeoxyglucose and positron emission tomography ((18)FDG-PET). HDAC dysfunction and other epigenetic mechanisms are implicated in diverse CNS disorders and animal research suggests HDAC inhibition may provide a lead toward developing improved treatment. To begin to better understand the role of the class I HDAC subtypes HDAC 1, 2 and 3 in modulating brain activity, we utilized two benzamide inhibitors from the literature, compound 60 (Cpd-60) and CI-994 which selectively inhibit HDAC 1 and 2 or HDACs 1, 2 and 3, respectively. One day after the seventh treatment with Cpd-60 (22.5 mg/kg) or CI-994 (5 mg/kg), (18)FDG-PET experiments (n=11-12 rats per treatment group) revealed significant, local changes in brain glucose utilization. These 2-17% changes were represented by increases and decreases in glucose uptake. The pattern of changes was similar but distinct between Cpd-60 and CI-994, supporting that (18)FDG-PET is a useful tool to examine the relationship between HDAC subtype activity and brain activity. Further work using additional selective HDAC inhibitors will be needed to clarify these effects as well as to understand how brain activity changes influence behavioral response.


ACS Chemical Neuroscience | 2014

PET Imaging Demonstrates Histone Deacetylase Target Engagement and Clarifies Brain Penetrance of Known and Novel Small Molecule Inhibitors in Rat

Frederick A. Schroeder; Cuihua Wang; G. C. Van de Bittner; Ramesh Neelamegam; W. R. Takakura; A. Karunakaran; Hsiao-Ying Wey; Surya A. Reis; Jennifer Gale; Yan-Ling Zhang; Edward B. Holson; Stephen J. Haggarty; Jacob M. Hooker

Histone deacetylase (HDAC) enzymes have been demonstrated as critical components in maintaining chromatin homeostasis, CNS development, and normal brain function. Evidence in mouse models links HDAC expression to learning, memory, and mood-related behaviors; small molecule HDAC inhibitor tool compounds have been used to demonstrate the importance of specific HDAC subtypes in modulating CNS-disease-related behaviors in rodents. So far, no direct evidence exists to understand the quantitative changes in HDAC target engagement that are necessary to alter biochemistry and behavior in a living animal. Understanding the relationship between target engagement and in vivo effect is essential in refining new ways to alleviate disease. We describe here, using positron emission tomography (PET) imaging of rat brain, the in vivo target engagement of a subset of class I/IIb HDAC enzymes implicated in CNS-disease (HDAC subtypes 1, 2, 3, and 6). We found marked differences in the brain penetrance of tool compounds from the hydroxamate and benzamide HDAC inhibitor classes and resolved a novel, highly brain penetrant benzamide, CN147, chronic treatment with which resulted in an antidepressant-like effect in a rat behavioral test. Our work highlights a new translational path for understanding the molecular and behavioral consequences of HDAC target engagement.


ACS Chemical Neuroscience | 2015

Kinetic Analysis and Quantification of [11C]Martinostat for in Vivo HDAC Imaging of the Brain

Hsiao-Ying Wey; Changning Wang; Frederick A. Schroeder; Jean Logan; Julie C. Price; Jacob M. Hooker

Epigenetic mechanisms mediated by histone deacetylases (HDACs) have been implicated in a wide-range of CNS disorders and may offer new therapeutic opportunities. In vivo evaluation of HDAC density and drug occupancy has become possible with [(11)C]Martinostat, which exhibits selectivity for a subset of class I/IIb HDAC enzymes. In this study, we characterize the kinetic properties of [(11)C]Martinostat in the nonhuman primate (NHP) brain in preparation for human neuroimaging studies. The goal of this work was to determine whether classic compartmental analysis techniques were appropriate and to further determine if arterial plasma is required for future NHP studies. Using an arterial plasma input function, several analysis approaches were evaluated for robust outcome measurements. [(11)C]Martinostat showed high baseline distribution volume (VT) ranging from 29.9 to 54.4 mL/cm(3) in the brain and large changes in occupancy (up to 99%) with a blocking dose approaching full enzyme saturation. An averaged nondisplaceable tissue uptake (VND) of 8.6 ± 3.7 mL/cm(3) suggests high specific binding of [(11)C]Martinostat. From a two-tissue compartment model, [(11)C]Martinostat exhibits a high K1 (averaged K1 of 0.65 mL/cm(3)/min) and a small k4 (average of 0.0085 min(-1)). Our study supports that [(11)C]Martinostat can be used to detect changes in HDAC density and occupancy in vivo and that simplified analysis not using arterial blood could be appropriate.


Nuclear Medicine and Biology | 2013

Evaluation of potential PET imaging probes for the orexin 2 receptors

Changning Wang; Colin M. Wilson; Christian K. Moseley; Stephen M. Carlin; Shirley Hsu; Grae Arabasz; Frederick A. Schroeder; Christin Y. Sander; Jacob M. Hooker

A wide range of central nervous system (CNS) disorders, particularly those related to sleep, are associated with the abnormal function of orexin (OX) receptors. Several orexin receptor antagonists have been reported in recent years, but currently there are no imaging tools to probe the density and function of orexin receptors in vivo. To date there are no published data on the pharmacokinetics (PK) and accumulation of some lead orexin receptor antagonists. Evaluation of CNS pharmacokinetics in the pursuit of positron emission tomography (PET) radiotracer development could be used to elucidate the association of orexin receptors with diseases and to facilitate the drug discovery and development. To this end, we designed and evaluated carbon-11 labeled compounds based on diazepane orexin receptor antagonists previously described. One of the synthesized compounds, [(11)C]CW4, showed high brain uptake in rats and further evaluated in non-human primate (NHP) using PET-MR imaging. PET scans performed in a baboon showed appropriate early brain uptake for consideration as a radiotracer. However, [(11)C]CW4 exhibited fast kinetics and high nonspecific binding, as determined after co-administration of [(11)C]CW4 and unlabeled CW4. These properties indicate that [(11)C]CW4 has excellent brain penetrance and could be used as a lead compound for developing new CNS-penetrant PET imaging probes of orexin receptors.

Collaboration


Dive into the Frederick A. Schroeder's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Changning Wang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge