Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Hsiao-Ying Wey is active.

Publication


Featured researches published by Hsiao-Ying Wey.


Pain | 2013

Functional connectivity of the frontoparietal network predicts cognitive modulation of pain

Jian Kong; Karin B. Jensen; Rita Loiotile; Alexandra Cheetham; Hsiao-Ying Wey; Ying Tan; Bruce R. Rosen; Jordan W. Smoller; Ted J. Kaptchuk; Randy L. Gollub

Summary Pretest resting state functional connectivity between the frontoparietal network and the rostral anterior cingulate cortex/medial prefrontal cortex is positively associated with cue effects on pain rating changes. ABSTRACT The experience of pain can be significantly influenced by expectancy (predictive cues). This ability to modulate pain has the potential to affect therapeutic analgesia substantially and constitutes a foundation for nonpharmacological pain relief. In this study, we investigated (1) brain regions involved in visual cue modulation of pain during anticipation of pain, pain administration, and pain rating; and (2) the association between pretest resting state functional connectivity and the magnitude of cue effects on pain ratings. We found that after cue conditioning, visual cues can significantly modulate subjective pain ratings. Functional magnetic resonance imaging results suggested that brain regions pertaining to the frontoparietal network (prefrontal and parietal cortex) and a pain/emotion modulatory region (rostral anterior cingulate cortex) are involved in cue modulation during both pain anticipation and administration stage. Most interestingly, we found that pretest resting state functional connectivity between the frontoparietal network (as identified by independent component analysis) and the rostral anterior cingulate cortex/medial prefrontal cortex was positively associated with cue effects on pain rating changes. We believe that these findings will shed new light on our understanding of variable cue/expectancy effects across individuals and how the intrinsic connectivity of the brain may influence expectancy‐induced modulation of pain.


Molecular Pain | 2013

S1 is associated with chronic low back pain: a functional and structural MRI study

Jian Kong; Rosa Spaeth; Hsiao-Ying Wey; Alexandra Cheetham; Amanda Cook; Karin B. Jensen; Ying Tan; Hesheng Liu; Danhong Wang; Marco L. Loggia; Vitaly Napadow; Jordan W. Smoller; Ajay D. Wasan; Randy L. Gollub

A fundamental characteristic of neural circuits is the capacity for plasticity in response to experience. Neural plasticity is associated with the development of chronic pain disorders. In this study, we investigated 1) brain resting state functional connectivity (FC) differences between patients with chronic low back pain (cLBP) and matched healthy controls (HC); 2) FC differences within the cLBP patients as they experienced different levels of endogenous low back pain evoked by exercise maneuvers, and 3) morphometric differences between cLBP patients and matched HC. We found the dynamic character of FC in the primary somatosensory cortex (S1) in cLBP patients, i.e., S1 FC decreased when the patients experienced low intensity LBP as compared with matched healthy controls, and FC at S1 increased when cLBP patients experienced high intensity LBP as compared with the low intensity condition. In addition, we also found increased cortical thickness in the bilateral S1 somatotopically associated with the lower back in cLBP patients as compared to healthy controls. Our results provide evidence of structural plasticity co-localized with areas exhibiting FC changes in S1 in cLBP patients.


Journal of Cerebral Blood Flow and Metabolism | 2011

Striatal and cortical BOLD, blood flow, blood volume, oxygen consumption, and glucose consumption changes in noxious forepaw electrical stimulation

Yen Yu I Shih; Hsiao-Ying Wey; Bryan H. De La Garza; Timothy Q. Duong

Recent reports showed noxious forepaw stimulation in rats evoked an unexpected sustained decrease in cerebral blood volume (CBV) in the bilateral striatum, whereas increases in spike activity and Fos-immunoreactive cells were observed. This study aimed to further evaluate the hemodynamic and metabolic needs in this model and the sources of negative functional magnetic resonance imaging (fMRI) signals by measuring blood oxygenation-level-dependent (BOLD), cerebral-blood-flow (CBF), CBV, and oxygen-consumption (i.e., cerebral metabolic rate of oxygen (CMRO2)) changes using an 11.7-T MRI scanner, and glucose-consumption (i.e., cerebral metabolic rate of glucose (CMRglc)) changes using micro-positron emission tomography. In the contralateral somatosensory cortex, BOLD, CBF, CBV, CMRO2 (n=7, P<0.05), and CMRglc (n=5, P<0.05) increased. In contrast, in the bilateral striatum, BOLD, CBF, and CBV decreased (P<0.05), CMRO2 decreased slightly, although not significantly from baseline, and CMRglc was not statistically significant from baseline (P>0.05). These multimodal functional imaging findings corroborate the unexpected negative hemodynamic changes in the striatum during noxious forepaw stimulation, and support the hypothesis that striatal hemodynamic response is dominated by neurotransmitter-mediated vasoconstriction, overriding the stimulus-evoked fMRI signal increases commonly accompany elevated neuronal activity. Multimodal functional imaging approach offers a means to probe the unique attributes of the striatum, providing novel insights into the neurovascular coupling in the striatum. These findings may have strong implications in fMRI studies of pain.


Journal of Cerebral Blood Flow and Metabolism | 2011

Baseline CBF, and BOLD, CBF, and CMRO2 fMRI of visual and vibrotactile stimulations in baboons

Hsiao-Ying Wey; Danny J.J. Wang; Timothy Q. Duong

Neurovascular coupling associated with visual and vibrotactile stimulations in baboons anesthetized sequentially with isoflurane and ketamine was evaluated using multimodal functional magnetic resonance imaging (fMRI) on a clinical 3-Tesla scanner. Basal cerebral blood flow (CBF), and combined blood-oxygenation-level-dependent (BOLD) and CBF fMRI of visual and somatosensory stimulations were measured using pseudo-continuous arterial spin labeling. Changes in stimulus-evoked cerebral metabolic rate of oxygen (CMRO2) were estimated using calibrated fMRI. Arterial transit time for vessel, gray matter (GM), and white matter (WM) were 250, 570, and 823 ms, respectively. Gray matter and WM CBF, respectively, were 107.8 ± 7.9 and 47.8 ± 3.8 mL per 100 g per minute under isoflurane, and 108.8 ± 10.3 and 48.7 ± 4.2 mL per 100 g per minute under ketamine (mean ± s.e.m., N = 8 sessions, five baboons). The GM/WM CBF ratio was not statistically different between the two anesthetics, averaging 2.3 ± 0.1. Hypercapnia evoked global BOLD and CBF increases. Blood-oxygenation-level-dependent, CBF, and CMRO2 signal changes by visual and vibrotactile stimulations were 0.19% to 0.22%, 18% to 23%, and 4.9% to 6.7%, respectively. The CBF/CMRO2 ratio was 2.9 to 4.7. Basal CBF and fMRI responses were not statistically different between the two anesthetics. This study establishes a multimodal fMRI protocol to probe clinically relevant functional, physiological and metabolic information in large nonhuman primates.


NeuroImage | 2014

Dynamic functional imaging of brain glucose utilization using fPET-FDG.

Marjorie Villien; Hsiao-Ying Wey; Joseph B. Mandeville; Ciprian Catana; Jonathan R. Polimeni; Christin Y. Sander; Nicole R. Zürcher; Daniel B. Chonde; Joanna S. Fowler; Bruce R. Rosen; Jacob M. Hooker

Glucose is the principal source of energy for the brain and yet the dynamic response of glucose utilization to changes in brain activity is still not fully understood. Positron emission tomography (PET) allows quantitative measurement of glucose metabolism using 2-[(18)F]-fluorodeoxyglucose (FDG). However, FDG PET in its current form provides an integral (or average) of glucose consumption over tens of minutes and lacks the temporal information to capture physiological alterations associated with changes in brain activity induced by tasks or drug challenges. Traditionally, changes in glucose utilization are inferred by comparing two separate scans, which significantly limits the utility of the method. We report a novel method to track changes in FDG metabolism dynamically, with higher temporal resolution than exists to date and within a single session. Using a constant infusion of FDG, we demonstrate that our technique (termed fPET-FDG) can be used in an analysis pipeline similar to fMRI to define within-session differential metabolic responses. We use visual stimulation to demonstrate the feasibility of this method. This new method has a great potential to be used in research protocols and clinical settings since fPET-FDG imaging can be performed with most PET scanners and data acquisition and analysis are straightforward. fPET-FDG is a highly complementary technique to MRI and provides a rich new way to observe functional changes in brain metabolism.


Nature Communications | 2017

Polyglucose nanoparticles with renal elimination and macrophage avidity facilitate PET imaging in ischaemic heart disease

Edmund J. Keliher; Yu-Xiang Ye; Gregory R. Wojtkiewicz; Aaron D. Aguirre; Benoit Tricot; Max L. Senders; Hannah Groenen; Francois Fay; Carlos Pérez-Medina; Claudia Calcagno; Giuseppe Carlucci; Thomas Reiner; Yuan Sun; Gabriel Courties; Yoshiko Iwamoto; Hye-Yeong Kim; Cuihua Wang; John W. Chen; Filip K. Swirski; Hsiao-Ying Wey; Jacob M. Hooker; Zahi A. Fayad; Willem J. M. Mulder; Ralph Weissleder; Matthias Nahrendorf

Tissue macrophage numbers vary during health versus disease. Abundant inflammatory macrophages destruct tissues, leading to atherosclerosis, myocardial infarction and heart failure. Emerging therapeutic options create interest in monitoring macrophages in patients. Here we describe positron emission tomography (PET) imaging with 18F-Macroflor, a modified polyglucose nanoparticle with high avidity for macrophages. Due to its small size, Macroflor is excreted renally, a prerequisite for imaging with the isotope flourine-18. The particles short blood half-life, measured in three species, including a primate, enables macrophage imaging in inflamed cardiovascular tissues. Macroflor enriches in cardiac and plaque macrophages, thereby increasing PET signal in murine infarcts and both mouse and rabbit atherosclerotic plaques. In PET/magnetic resonance imaging (MRI) experiments, Macroflor PET imaging detects changes in macrophage population size while molecular MRI reports on increasing or resolving inflammation. These data suggest that Macroflor PET/MRI could be a clinical tool to non-invasively monitor macrophage biology.


ACS Chemical Neuroscience | 2014

Synthesis and Imaging Validation of [18F]MDL100907 Enabled by Ni-Mediated Fluorination

Hong Ren; Hsiao-Ying Wey; Martin G. Strebl; Ramesh Neelamegam; Tobias Ritter; Jacob M. Hooker

Several voids exist in reliable positron emission tomography (PET) radioligands for quantification of the serotonin (5HT) receptor system. Even in cases where 5HT radiotracers exist, challenges remain that have limited the utility of 5HT imaging in clinical research. Herein we address an unmet need in 5HT2a imaging using innovative chemistry. We report a scalable and robust synthesis of [(18)F]MDL100907, which was enabled by a Ni-mediated oxidative fluorination using [(18)F]fluoride. This first demonstration of a Ni-mediated fluorination used for PET imaging required development of a new reaction strategy that ultimately provided high specific activity [(18)F]MDL100907. Using the new synthetic strategy and optimized procedure, [(18)F]MDL100907 was evaluated against [(11)C]MDL100907 for reliability to quantify 5HT₂a in the nonhuman primate brain and was found to be superior based on a single scan analysis using the same nonhuman primate. The use of this new 5HT₂a radiotracer will afford clinical neuroscience research the ability to distinguish 5HT₂a receptor abnormalities binding between healthy subjects and patients even when group differences are small.


Science Translational Medicine | 2016

Insights into neuroepigenetics through human histone deacetylase PET imaging

Hsiao-Ying Wey; Tonya M. Gilbert; Nicole R. Zürcher; Angela She; Anisha Bhanot; Brendan D. Taillon; Fredrick A. Schroeder; Changing Wang; Stephen J. Haggarty; Jacob M. Hooker

First-in-human neuroepigenetic PET imaging with [11C]Martinostat reveals conserved region-specific expression of class I HDACs in the healthy brain. Brain epigenetics revealed Certain enzymes called histone deacetylases, or HDACs, are part of the epigenetic machinery that regulates gene transcription. In neurological disorders, HDACs change expression in regions throughout the brain, but their dynamic contribution to human disease development over time is unknown. Wey et al. therefore developed and applied an HDAC imaging probe, called Martinostat, to visualize HDAC expression in the living brain. Martinostat was previously tested in rodents and nonhuman primates, and here, it is used for the first time in humans. The authors saw surprisingly conserved regions of HDAC expression in the healthy brain, suggesting tightly regulated epigenetic processes. In human stem cell–derived neural progenitor cells, Martinostat engaged the subset HDACs that regulate downstream genes important for neuroplasticity, memory, and neurodegeneration, supporting its use in monitoring and understanding brain pathologies like Alzheimer’s disease. Epigenetic dysfunction is implicated in many neurological and psychiatric diseases, including Alzheimer’s disease and schizophrenia. Consequently, histone deacetylases (HDACs) are being aggressively pursued as therapeutic targets. However, a fundamental knowledge gap exists regarding the expression and distribution of HDACs in healthy individuals for comparison to disease states. Here, we report the first-in-human evaluation of neuroepigenetic regulation in vivo. Using positron emission tomography with [11C]Martinostat, an imaging probe selective for class I HDACs (isoforms 1, 2, and 3), we found that HDAC expression is higher in cortical gray matter than in white matter, with conserved regional distribution patterns within and between healthy individuals. Among gray matter regions, HDAC expression was lowest in the hippocampus and amygdala. Through biochemical profiling of postmortem human brain tissue, we confirmed that [11C]Martinostat selectively binds HDAC isoforms 1, 2, and 3, the HDAC subtypes most implicated in regulating neuroplasticity and cognitive function. In human stem cell–derived neural progenitor cells, pharmacologic-level doses of Martinostat induced changes in genes closely associated with synaptic plasticity, including BDNF (brain-derived neurotrophic factor) and SYP (synaptophysin), as well as genes implicated in neurodegeneration, including GRN (progranulin), at the transcript level, in concert with increased acetylation at both histone H3 lysine 9 and histone H4 lysine 12. This study quantifies HDAC expression in the living human brain and provides the foundation for gaining unprecedented in vivo epigenetic information in health and disease.


Journal of Medicinal Chemistry | 2014

In Vivo Imaging of Histone Deacetylases (HDACs) in the Central Nervous System and Major Peripheral Organs

Changning Wang; Frederick A. Schroeder; Hsiao-Ying Wey; Ronald Borra; Florence F. Wagner; Surya A. Reis; Sung Won Kim; Edward B. Holson; Stephen J. Haggarty; Jacob M. Hooker

Epigenetic enzymes are now targeted to treat the underlying gene expression dysregulation that contribute to disease pathogenesis. Histone deacetylases (HDACs) have shown broad potential in treatments against cancer and emerging data supports their targeting in the context of cardiovascular disease and central nervous system dysfunction. Development of a molecular agent for non-invasive imaging to elucidate the distribution and functional roles of HDACs in humans will accelerate medical research and drug discovery in this domain. Herein, we describe the synthesis and validation of an HDAC imaging agent, [11C]6. Our imaging results demonstrate that this probe has high specificity, good selectivity, and appropriate kinetics and distribution for imaging HDACs in the brain, heart, kidney, pancreas, and spleen. Our findings support the translational potential for [11C]6 for human epigenetic imaging.


Brain Structure & Function | 2014

Multi-region hemispheric specialization differentiates human from nonhuman primate brain function

Hsiao-Ying Wey; Kimberley A. Phillips; D. Reese McKay; Angela R. Laird; Peter Kochunov; M. Duff Davis; David C. Glahn; Timothy Q. Duong; Peter T. Fox

The human behavioral repertoire greatly exceeds that of nonhuman primates. Anatomical specializations of the human brain include an enlarged neocortex and prefrontal cortex (Semendeferi et al. in Am J Phys Anthropol 114:224–241, 2001), but regional enlargements alone cannot account for these vast functional differences. Hemispheric specialization has long believed to be a major contributing factor to such distinctive human characteristics as motor dominance, attentional control and language. Yet structural cerebral asymmetries, documented in both humans and some nonhuman primate species, are relatively minor compared to behavioral lateralization. Identifying the mechanisms that underlie these functional differences remains a goal of considerable interest. Here, we investigate the intrinsic connectivity networks in four primate species (humans, chimpanzees, baboons, and capuchin monkeys) using resting-state fMRI to evaluate the intra- and inter- hemispheric coherences of spontaneous BOLD fluctuation. All three nonhuman primate species displayed lateralized functional networks that were strikingly similar to those observed in humans. However, only humans had multi-region lateralized networks, which provide fronto-parietal connectivity. Our results indicate that this pattern of within-hemisphere connectivity distinguishes humans from nonhuman primates.

Collaboration


Dive into the Hsiao-Ying Wey's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Timothy Q. Duong

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Peter T. Fox

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Changning Wang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge