Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederick Allen is active.

Publication


Featured researches published by Frederick Allen.


American Journal of Physiology-endocrinology and Metabolism | 2010

Parenteral and enteral metabolism of anaplerotic triheptanoin in normal rats. II. Effects on lipolysis, glucose production, and liver acyl-CoA profile

Lei Gu; Guo Fang Zhang; Rajan S. Kombu; Frederick Allen; Gerd Kutz; Wolf Ulrich Brewer; Charles R. Roe; Henri Brunengraber

The anaplerotic odd-medium-chain triglyceride triheptanoin is used in clinical trials for the chronic dietary treatment of patients with long-chain fatty acid oxidation disorders. We previously showed (Kinman RP, Kasumov T, Jobbins KA, Thomas KR, Adams JE, Brunengraber LN, Kutz G, Brewer WU, Roe CR, Brunengraber H. Am J Physiol Endocrinol Metab 291: E860-E866, 2006) that the intravenous infusion of triheptanoin increases lipolysis traced by the turnover of glycerol. In this study, we tested whether lipolysis induced by triheptanoin infusion is accompanied by the potentially harmful release of long-chain fatty acids. Rats were infused with heptanoate +/- glycerol or triheptanoin. Intravenous infusion of triheptanoin at 40% of caloric requirement markedly increased glycerol endogenous R(a) but not oleate endogenous R(a). Thus, the activation of lipolysis was balanced by fatty acid reesterification in the same cells. The liver acyl-CoA profile showed the accumulation of intermediates of heptanoate beta-oxidation and C(5)-ketogenesis and a decrease in free CoA but no evidence of metabolic perturbation of liver metabolism such as propionyl overload. Our data suggest that triheptanoin, administered either intravenously or intraduodenally, could be used for intensive care and nutritional support of metabolically decompensated long-chain fatty acid oxidation disorders.


Journal of Clinical Investigation | 2017

Fibroblastic niches prime T cell alloimmunity through Delta-like Notch ligands

Jooho Chung; Christen L. Ebens; Eric Perkey; Vedran Radojcic; Ute Koch; Leonardo Scarpellino; Alexander Tong; Frederick Allen; Sherri C. Wood; Jiane Feng; Ann Friedman; David Granadier; Ivy T. Tran; Qian Chai; Lucas Onder; Minhong Yan; Pavan Reddy; Bruce R. Blazar; Alex Y. Huang; Todd V. Brennan; D. Keith Bishop; Burkhard Ludewig; Christian W. Siebel; Freddy Radtke; Sanjiv A. Luther; Ivan Maillard

Alloimmune T cell responses induce graft-versus-host disease (GVHD), a serious complication of allogeneic bone marrow transplantation (allo-BMT). Although Notch signaling mediated by Delta-like 1/4 (DLL1/4) Notch ligands has emerged as a major regulator of GVHD pathogenesis, little is known about the timing of essential Notch signals and the cellular source of Notch ligands after allo-BMT. Here, we have shown that critical DLL1/4-mediated Notch signals are delivered to donor T cells during a short 48-hour window after transplantation in a mouse allo-BMT model. Stromal, but not hematopoietic, cells were the essential source of Notch ligands during in vivo priming of alloreactive T cells. GVHD could be prevented by selective inactivation of Dll1 and Dll4 in subsets of fibroblastic stromal cells that were derived from chemokine Ccl19-expressing host cells, including fibroblastic reticular cells and follicular dendritic cells. However, neither T cell recruitment into secondary lymphoid organs nor initial T cell activation was affected by Dll1/4 loss. Thus, we have uncovered a pathogenic function for fibroblastic stromal cells in alloimmune reactivity that can be dissociated from their homeostatic functions. Our results reveal what we believe to be a previously unrecognized Notch-mediated immunopathogenic role for stromal cell niches in secondary lymphoid organs after allo-BMT and define a framework of early cellular and molecular interactions that regulate T cell alloimmunity.


OncoImmunology | 2013

Murine leukemia virus envelope gp70 is a shared biomarker for the high-sensitivity quantification of murine tumor burden

Francesca Scrimieri; David S. Askew; David Corn; Saada Eid; Iuliana D. Bobanga; Jaclyn A Bjelac; Matthew Tsao; Frederick Allen; Youmna Othman; Shih-Chung G Wang; Alex Y. Huang

The preclinical development of anticancer drugs including immunotherapeutics and targeted agents relies on the ability to detect minimal residual tumor burden as a measure of therapeutic efficacy. Real-time quantitative (qPCR) represents an exquisitely sensitive method to perform such an assessment. However, qPCR-based applications are limited by the availability of a genetic defect associated with each tumor model under investigation. Here, we describe an off-the-shelf qPCR-based approach to detect a broad array of commonly used preclinical murine tumor models. In particular, we report that the mRNA coding for the envelope glycoprotein 70 (gp70) encoded by the endogenous murine leukemia virus (MuLV) is universally expressed in 22 murine cancer cell lines of disparate histological origin but is silent in 20 out of 22 normal mouse tissues. Further, we detected the presence of as few as 100 tumor cells in whole lung extracts using qPCR specific for gp70, supporting the notion that this detection approach has a higher sensitivity as compared with traditional tissue histology methods. Although gp70 is expressed in a wide variety of tumor cell lines, it was absent in inflamed tissues, non-transformed cell lines, or pre-cancerous lesions. Having a high-sensitivity biomarker for the detection of a wide range of murine tumor cells that does not require additional genetic manipulations or the knowledge of specific genetic alterations present in a given neoplasm represents a unique experimental tool for investigating metastasis, assessing antitumor therapeutic interventions, and further determining tumor recurrence or minimal residual disease.


European Journal of Immunology | 2015

Polyphenol administration impairs T-cell proliferation by imprinting a distinct dendritic cell maturational profile

Francesca Romana Delvecchio; Elisa Vadrucci; Elisabetta Cavalcanti; Stefania De Santis; Da Kunde; Michele Vacca; Jay Myers; Frederick Allen; Giusy Bianco; Alex Y. Huang; Vladia Monsurrò; Angelo Santino; Marcello Chieppa

Currently little is known as to how nutritionally derived compounds may affect dendritic cell (DC) maturation and potentially prevent inappropriate inflammatory responses that are characteristic of chronic inflammatory syndromes. Previous observations have demonstrated that two polyphenols quercetin and piperine delivered through reconstituted oil bodies (ROBs‐QP) can influence DC maturation in response to LPS leading to a modulated inflammatory response. In the present study, we examined the molecular effects of ROBs‐QP exposure on DC differentiation in mice and identified a unique molecular signature in response to LPS administration that potentially modulates DC maturation and activity in inflammatory conditions. Following LPS administration, ROBs‐QP‐exposed DCs expressed an altered molecular profile as compared with control DCs, including cytokine and chemokine production, chemokine receptor repertoire, and antigen presentation ability. In vivo ROBs‐QP administration suppresses antigen‐specific T‐cell division in the draining lymph nodes resulting from a reduced ability to create stable immunological synapse. Our data demonstrate that polyphenols exposure can drive DCs toward a new anti‐inflammatory molecular profile capable of dampening the inflammatory response, highlighting their potential as complementary nutritional approaches in the treatment of chronic inflammatory syndromes.


Nature Medicine | 2018

Positively selected enhancer elements endow osteosarcoma cells with metastatic competence

James J. Morrow; Ian Bayles; Alister P.W. Funnell; Tyler E. Miller; Alina Saiakhova; Michael M. Lizardo; Cynthia F. Bartels; Maaike Y. Kapteijn; Stevephen Hung; Arnulfo Mendoza; Gursimran Dhillon; Daniel R. Chee; Jay Myers; Frederick Allen; Marco Gambarotti; Alberto Righi; Analisa DiFeo; Brian P. Rubin; Alex Y. Huang; Paul S. Meltzer; Lee J. Helman; Piero Picci; Henri H. Versteeg; John A. Stamatoyannopoulos; Chand Khanna; Peter C. Scacheri

Metastasis results from a complex set of traits acquired by tumor cells, distinct from those necessary for tumorigenesis. Here, we investigate the contribution of enhancer elements to the metastatic phenotype of osteosarcoma. Through epigenomic profiling, we identify substantial differences in enhancer activity between primary and metastatic human tumors and between near isogenic pairs of highly lung metastatic and nonmetastatic osteosarcoma cell lines. We term these regions metastatic variant enhancer loci (Met-VELs). Met-VELs drive coordinated waves of gene expression during metastatic colonization of the lung. Met-VELs cluster nonrandomly in the genome, indicating that activity of these enhancers and expression of their associated gene targets are positively selected. As evidence of this causal association, osteosarcoma lung metastasis is inhibited by global interruptions of Met-VEL-associated gene expression via pharmacologic BET inhibition, by knockdown of AP-1 transcription factors that occupy Met-VELs, and by knockdown or functional inhibition of individual genes activated by Met-VELs, such as that encoding coagulation factor III/tissue factor (F3). We further show that genetic deletion of a single Met-VEL at the F3 locus blocks metastatic cell outgrowth in the lung. These findings indicate that Met-VELs and the genes they regulate play a functional role in metastasis and may be suitable targets for antimetastatic therapies.


OncoImmunology | 2018

CCL3 augments tumor rejection and enhances CD8+ T cell infiltration through NK and CD103+ dendritic cell recruitment via IFNγ

Frederick Allen; Iuliana D. Bobanga; Peter Rauhe; Deborah Barkauskas; Nathan Teich; Caryn Tong; Jay Myers; Alex Y. Huang

ABSTRACT Inflammatory chemokines are critical contributors in attracting relevant immune cells to the tumor microenvironment and driving cellular interactions and molecular signaling cascades that dictate the ultimate outcome of host anti-tumor immune response. Therefore, rational application of chemokines in a spatial-temporal dependent manner may constitute an attractive adjuvant in immunotherapeutic approaches against cancer. Existing data suggest that the macrophage inflammatory protein (MIP)-1 family and related proteins, consisting of CCL3 (MIP-1α), CCL4 (MIP-1β), and CCL5 (RANTES), can be major determinant of immune cellular infiltration in certain tumors through their direct recruitment of antigen presenting cells, including dendritic cells (DCs) to the tumor site. In this study, we examined how CCL3 in a murine colon tumor microenvironment, CT26, enhances antitumor immunity. We identified natural killer (NK) cells as a major lymphocyte subtype that is preferentially recruited to the CCL3-rich tumor site. NK cells contribute to the overall IFNγ content, CD103+ DC accumulation, and augment the production of chemokines CXCL9 and CXCL10 for enhanced T cell recruitment. We further demonstrate that both soluble CCL3 and CCL3-secreting irradiated tumor vaccine can effectively halt the progression of established tumors in a spatial-dependent manner. Our finding implies an important contribution of NK in the CCL3 – CD103+ DC – CXCL9/10 signaling axis in determining tumor immune landscape within the tumor microenvironment.


Frontiers in Immunology | 2017

CCL3 Enhances Antitumor Immune Priming in the Lymph Node via IFNγ with Dependency on Natural Killer Cells

Frederick Allen; Peter Rauhe; David Askew; Alexander Tong; Joseph Nthale; Saada Eid; Jay Myers; Caryn Tong; Alex Y. Huang

Lymph node (LN) plays a critical role in tumor cell survival outside of the primary tumor sites and dictates overall clinical response in many tumor types (1, 2). Previously, we and others have demonstrated that CCL3 plays an essential role in orchestrating T cell—antigen-presenting cell (APC) encounters in the draining LN following vaccination, and such interactions enhance the magnitude of the memory T cell pool (3–5). In the current study, we investigate the cellular responses in the tumor-draining lymph nodes (TDLNs) of a CCL3-secreting CT26 colon tumor (L3TU) as compared to wild-type tumor (WTTU) during the priming phase of an antitumor response (≤10 days). In comparison to WTTU, inoculation of L3TU resulted in suppressed tumor growth, a phenomenon that is accompanied by altered in vivo inflammatory responses on several fronts. Autologous tumor-derived CCL3 (aCCL3) secretion by L3TU bolstered the recruitment of T- and B-lymphocytes, tissue-migratory CD103+ dendritic cells (DCs), and CD49b+ natural killer (NK) cells, resulting in significant increases in the differentiation and activation of multiple Interferon-gamma (IFNγ)-producing leukocytes in the TDLN. During this early phase of immune priming, NK cells constitute the major producers of IFNγ in the TDLN. CCL3 also enhances CD8+ T cell proliferation and differentiation by augmenting DC capacity to drive T cell activation in the TDLN. Our results revealed that CCL3-dependent IFNγ production and CCL3-induced DC maturation drive the priming of effective antitumor immunity in the TDLN.


Frontiers in Immunology | 2016

Unique Transcompartmental Bridge: Antigen-Presenting Cells Sampling across Endothelial and Mucosal Barriers

Frederick Allen; Alexander Tong; Alex Y. Huang

Potentially harmful pathogens can gain access to tissues and organ systems through body sites that are in direct contact with the outside environment, such as the skin, the gut, and the airway mucosa. Antigen-presenting cells (APCs) represent a bridge between the innate and adaptive immunity, and their capacity for constant immune surveillance and rapid sampling of incoming pathogens and other potentially harmful antigens is central for mounting an effective and robust protective host response. The classical view is that APCs perform this task efficiently within the tissue to sense invading agents intra-compartmentally. However, recent data based on high resolution imaging support an additional transcompartmental surveillance behavior by APC by reaching across intact physical barriers. In this review, we summarize intravital microscopic evidences of APC to sample antigens transcompartmentally at the gut mucosa and other body sites.


bioRxiv | 2017

Positively Selected Enhancer Elements Endow Tumor Cells with Metastatic Competence

James J. Morrow; Ian Bayles; Alister P.W. Funnell; Tyler E. Miller; Alina Saiakhova; Michael M. Lizardo; Cynthia F. Bartels; Maaike Kapteijn; Stevephen Hung; Arnulfo Mendoza; Daniel Chee; Jay Myers; Frederick Allen; Marco Gambarotti; Alberto Righi; Analisa DiFeo; Brian P. Rubin; Alex Y. Huang; Paul S. Meltzer; Lee J. Helman; Piero Picci; Henri Versteeg; John A. Stamatoyannopoulos; Chand Khanna; Peter C. Scacheri

Metastasis results from a complex set of traits acquired by tumor cells, distinct from those necessary for tumorigenesis. Here, we investigate the contribution of enhancer elements to the metastatic phenotype of osteosarcoma. Through epigenomic profiling, we identify substantial differences in enhancer activity between primary and metastatic tumors in human patients as well as nearisogenic pairs of high and low lung-metastatic osteosarcoma cells. We term these regions Metastatic Variant Enhancer Loci (Met-VELs). We demonstrate that these Met-VELs drive coordinated waves of gene expression during metastatic colonization of the lung. Met-VELs cluster non-randomly, indicating that activity of these enhancers and their associated gene targets are positively selected. As evidence of this causal association, osteosarcoma lung metastasis is inhibited by global interruptions of Met-VEL-associated gene expression via pharmacologic BET inhibition, by knockdown of AP-1 transcription factors that occupy Met-VELs, and by knockdown or functional inhibition of individual genes activated by Met-VELs, such as F3. We further show that genetic deletion of a single Met-VEL at the F3 locus blocks metastatic cell outgrowth in the lung. These findings indicate that Met-VELs and the genes they regulate play a functional role in metastasis and may be suitable targets for anti-metastatic therapies.


OncoImmunology | 2017

Adoptive natural killer cell therapy is effective in reducing pulmonary metastasis of Ewing sarcoma

Alexander Tong; Hasan Hashem; Saada Eid; Frederick Allen; Daniel Kingsley; Alex Y. Huang

ABSTRACT The survival of patients with metastatic or relapsed Ewing sarcoma (ES) remains dismal despite intensification of combination chemotherapy and radiotherapy, precipitating the need for novel alternative therapies with minimal side effects. Natural killer (NK) cells are promising additions to the field of cellular immunotherapy. Adoptive NK cell therapy has shown encouraging results in hematological malignancies. Despite these initial promising successes, however, NK cell therapy for solid tumors remains to be investigated using in vivo tumor models. The purpose of this study is to evaluate the efficacy of ex vivo expanded human NK cells in controlling primary and metastatic ES tumor growth in vitro and in vivo. Using membrane-bound IL-21 containing K562 (K562-mbIL-21) expansion platform, we were able to obtain sufficient numbers of expanded NK (eNK) cells that display favorable activation phenotypes and inflammatory cytokine secretion, along with a strong in vitro cytotoxic effect against ES. Furthermore, eNK therapy significantly decreased lung metastasis without any significant therapeutic effect in limiting primary tumor growth in an in vivo xenograft model. Our data demonstrate that eNK may be effective against pulmonary metastatic ES, but challenges remain to direct proper trafficking and augmenting the cytotoxic function of eNK to target primary tumor sites.

Collaboration


Dive into the Frederick Allen's collaboration.

Top Co-Authors

Avatar

Alex Y. Huang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Jay Myers

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Alexander Tong

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Iuliana D. Bobanga

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Alina Saiakhova

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Analisa DiFeo

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Arnulfo Mendoza

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chand Khanna

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cynthia F. Bartels

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge