Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay Myers is active.

Publication


Featured researches published by Jay Myers.


Journal of Cell Biology | 2002

Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus

Peter L. Smith; Jay Myers; Clare E. Rogers; Lan Zhou; Bronia Petryniak; Daniel J. Becker; Jonathon W. Homeister; John B. Lowe

Glycoprotein fucosylation enables fringe-dependent modulation of signal transduction by Notch transmembrane receptors, contributes to selectin-dependent leukocyte trafficking, and is faulty in leukocyte adhesion deficiency (LAD) type II, also known as congenital disorder of glycosylation (CDG)-IIc, a rare human disorder characterized by psychomotor defects, developmental abnormalities, and leukocyte adhesion defects. We report here that mice with an induced null mutation in the FX locus, which encodes an enzyme in the de novo pathway for GDP–fucose synthesis, exhibit a virtually complete deficiency of cellular fucosylation, and variable frequency of intrauterine demise determined by parental FX genotype. Live-born FX(−/−) mice exhibit postnatal failure to thrive that is suppressed with a fucose-supplemented diet. FX(−/−) adults suffer from an extreme neutrophilia, myeloproliferation, and absence of leukocyte selectin ligand expression reminiscent of LAD-II/CDG-IIc. Contingent restoration of leukocyte and endothelial selectin ligand expression, general cellular fucosylation, and normal postnatal physiology is achieved by modulating dietary fucose to supply a salvage pathway for GDP–fucose synthesis. Conditional control of fucosylation in FX(−/−) mice identifies cellular fucosylation events as essential concomitants to fertility, early growth and development, and leukocyte adhesion.


PLOS ONE | 2011

Direct in vivo evidence for tumor propagation by glioblastoma cancer stem cells.

Justin D. Lathia; Joseph Gallagher; Jay Myers; Meizhang Li; Amit Vasanji; Roger E. McLendon; Anita B. Hjelmeland; Alex Y. Huang; Jeremy N. Rich

High-grade gliomas (World Health Organization grade III anaplastic astrocytoma and grade IV glioblastoma multiforme), the most prevalent primary malignant brain tumors, display a cellular hierarchy with self-renewing, tumorigenic cancer stem cells (CSCs) at the apex. While the CSC hypothesis has been an attractive model to describe many aspects of tumor behavior, it remains controversial due to unresolved issues including the use of ex vivo analyses with differential growth conditions. A CSC population has been confirmed in malignant gliomas by preferential tumor formation from cells directly isolated from patient biopsy specimens. However, direct comparison of multiple tumor cell populations with analysis of the resulting phenotypes of each population within a representative tumor environment has not been clearly described. To directly test the relative tumorigenic potential of CSCs and non-stem tumor cells in the same microenvironment, we interrogated matched tumor populations purified from a primary human tumor transplanted into a xenograft mouse model and monitored competitive in vivo tumor growth studies using serial in vivo intravital microscopy. While CSCs were a small minority of the initial transplanted cancer cell population, the CSCs, not the non-stem tumor cells, drove tumor formation and yielded tumors displaying a cellular hierarchy. In the resulting tumors, a fraction of the initial transplanted CSCs maintained expression of stem cell and proliferation markers, which were significantly higher compared to the non-stem tumor cell population and demonstrated that CSCs generated cellular heterogeneity within the tumor. These head-to-head comparisons between matched CSCs and non-stem tumor cells provide the first functional evidence using live imaging that in the same microenvironment, CSCs more than non-stem tumor cells are responsible for tumor propagation, confirming the functional definition of a CSC.


Experimental Neurology | 2014

High-resolution intravital imaging reveals that blood-derived macrophages but not resident microglia facilitate secondary axonal dieback in traumatic spinal cord injury.

Teresa A. Evans; Deborah Barkauskas; Jay Myers; Elisabeth G. Hare; Jing Qiang You; Richard M. Ransohoff; Alex Y. Huang; Jerry Silver

After traumatic spinal cord injury, functional deficits increase as axons die back from the center of the lesion and the glial scar forms. Axonal dieback occurs in two phases: an initial axon intrinsic stage that occurs over the first several hours and a secondary phase which takes place over the first few weeks after injury. Here, we examine the secondary phase, which is marked by infiltration of macrophages. Using powerful time-lapse multi-photon imaging, we captured images of interactions between Cx3cr1(+/GFP) macrophages and microglia and Thy-1(YFP) axons in a mouse dorsal column crush spinal cord injury model. Over the first few weeks after injury, axonal retraction bulbs within the lesion are static except when axonal fragments are lost by a blebbing mechanism in response to physical contact followed by phagocytosis by mobile Cx3Cr1(+/GFP) cells. Utilizing a radiation chimera model to distinguish marrow-derived cells from radio-resistant CNS-resident microglia, we determined that the vast majority of accumulated cells in the lesion are derived from the blood and only these are associated with axonal damage. Interestingly, CNS-resident Cx3Cr1(+/GFP) microglia did not increasingly accumulate nor participate in neuronal destruction in the lesion during this time period. Additionally, we found that the blood-derived cells consisted mainly of singly labeled Ccr2(+/RFP) macrophages, singly labeled Cx3Cr1(+/GFP) macrophages and a small population of double-labeled cells. Since all axon destructive events were seen in contact with a Cx3Cr1(+/GFP) cell, we infer that the CCR2 single positive subset is likely not robustly involved in axonal dieback. Finally, in our model, deletion of CCR2, a chemokine receptor, did not alter the position of axons after dieback. Understanding the in vivo cellular interactions involved in secondary axonal injury may lead to clinical treatment candidates involving modulation of destructive infiltrating blood monocytes.


Science | 2016

Cdk5 disruption attenuates tumor PD-L1 expression and promotes antitumor immunity

Rodney Dixon Dorand; Joseph Nthale; Jay Myers; Deborah Barkauskas; Stefanie Avril; Steven M. Chirieleison; Tej K. Pareek; Duncan Stearns; John J. Letterio; Alex Y. Huang; Agne Petrosiute

Cyclin suppresses antitumor immunity Despite the dramatic success of cancer immunotherapy, many types of cancer do not respond. Understanding why could help us to find ways to enhance the overall responsiveness of tumors to immunotherapies. Dorand et al. report that cyclin-dependent kinase 5 (Cdk5), an enzyme that is highly expressed by neurons in many brain cancers, may dampen the ability of T cells to reject tumors. In a mouse model of medulloblastoma, if tumors were Cdk5 deficient, T cells were able to remove them. This heightened antitumor immunity correlated with reduced expression of the inhibitory molecule programmed cell death ligand 1 (PD-L1), a target of current cancer immunotherapies. Science, this issue p. 399 Cyclin-dependent kinase 5 expression by tumors inhibits antitumor immunity in human and mouse medulloblastoma. Cancers often evade immune surveillance by adopting peripheral tissue– tolerance mechanisms, such as the expression of programmed cell death ligand 1 (PD-L1), the inhibition of which results in potent antitumor immunity. Here, we show that cyclin-dependent kinase 5 (Cdk5), a serine-threonine kinase that is highly active in postmitotic neurons and in many cancers, allows medulloblastoma (MB) to evade immune elimination. Interferon-γ (IFN-γ)–induced PD-L1 up-regulation on MB requires Cdk5, and disruption of Cdk5 expression in a mouse model of MB results in potent CD4+ T cell–mediated tumor rejection. Loss of Cdk5 results in persistent expression of the PD-L1 transcriptional repressors, the interferon regulatory factors IRF2 and IRF2BP2, which likely leads to reduced PD-L1 expression on tumors. Our finding highlights a central role for Cdk5 in immune checkpoint regulation by tumor cells.


Stem Cells | 2015

Notch Receptor‐Ligand Engagement Maintains Hematopoietic Stem Cell Quiescence and Niche Retention

Weihuan Wang; Shuiliang Yu; Grant Zimmerman; Yiwei Wang; Jay Myers; Vionnie W.C. Yu; Dan Huang; Xiaoran Huang; Jeongsup Shim; Y. Huang; William W. Xin; Peter Qiao; Minhong Yan; Wei Xin; David T. Scadden; Pamela Stanley; John B. Lowe; Alex Y. Huang; Christian W. Siebel; Lan Zhou

Notch is long recognized as a signaling molecule important for stem cell self‐renewal and fate determination. Here, we reveal a novel adhesive role of Notch‐ligand engagement in hematopoietic stem and progenitor cells (HSPCs). Using mice with conditional loss of O‐fucosylglycans on Notch EGF‐like repeats important for the binding of Notch ligands, we report that HSPCs with faulty ligand binding ability display enhanced cycling accompanied by increased egress from the marrow, a phenotype mainly attributed to their reduced adhesion to Notch ligand‐expressing stromal cells and osteoblastic cells and their altered occupation in osteoblastic niches. Adhesion to Notch ligand‐bearing osteoblastic or stromal cells inhibits wild type but not O‐fucosylglycan‐deficient HSPC cycling, independent of RBP‐JK‐mediated canonical Notch signaling. Furthermore, Notch‐ligand neutralizing antibodies induce RBP‐JK‐independent HSPC egress and enhanced HSPC mobilization. We, therefore, conclude that Notch receptor–ligand engagement controls HSPC quiescence and retention in the marrow niche that is dependent on O‐fucosylglycans on Notch. Stem Cells 2015;33:2280–2293


Microscopy and Microanalysis | 2013

Extravascular CX3CR1+ cells extend intravascular dendritic processes into intact central nervous system vessel lumen

Deborah Barkauskas; Teresa A. Evans; Jay Myers; Agne Petrosiute; Jerry Silver; Alex Y. Huang

Within the central nervous system (CNS), antigen-presenting cells (APCs) play a critical role in orchestrating inflammatory responses where they present CNS-derived antigens to immune cells that are recruited from the circulation to the cerebrospinal fluid, parenchyma, and perivascular space. Available data indicate that APCs do so indirectly from outside of CNS vessels without direct access to luminal contents. Here, we applied high-resolution, dynamic intravital two-photon laser scanning microscopy to directly visualize extravascular CX3CR1+ APC behavior deep within undisrupted CNS tissues in two distinct anatomical sites under three different inflammatory stimuli. Surprisingly, we observed that CNS-resident APCs dynamically extend their cellular processes across an intact vessel wall into the vascular lumen with preservation of vessel integrity. While only a small number of APCs displayed intravascular extensions in intact, noninflamed vessels in the brain and the spinal cord, the frequency of projections increased over days in an experimental autoimmune encephalomyelitis model, whereas the number of projections remained stable compared to baseline days after tissue injury such as CNS tumor infiltration and aseptic spinal cord trauma. Our observation of this unique behavior by parenchyma CX3CR1+ cells in the CNS argues for further exploration into their functional role in antigen sampling and immune cell recruitment.


American Journal of Pathology | 2010

O-fucose modulates Notch-controlled blood lineage commitment.

Quanjian Yan; David C. Yao; Lebing L. Wei; Y. Huang; Jay Myers; Lihua Zhang; Wei Xin; Jeongsup Shim; Yunfang Man; Bronislawa Petryniak; Stanton L. Gerson; John B. Lowe; Lan Zhou

Notch receptors are cell surface molecules essential for cell fate determination. Notch signaling is subject to tight regulation at multiple levels, including the posttranslational modification of Notch receptors by O-linked fucosylation, a reaction that is catalyzed by protein O-fucosyltransferase-1 (Pofut1). Our previous studies identified a myeloproliferative phenotype in mice conditionally deficient in cellular fucosylation that is attributable to a loss of Notch-dependent suppression of myelopoiesis. Here, we report that hematopoietic stem cells deficient in cellular fucosylation display decreased frequency and defective repopulating ability as well as decreased lymphoid but increased myeloid developmental potential. This phenotype may be attributed to suppressed Notch ligand binding and reduced downstream signaling of Notch activity in hematopoietic stem cells. Consistent with this finding, we further demonstrate that mouse embryonic stem cells deficient in Notch1 (Notch1(-/-)) or Pofut1 (Pofut1(-/-)) fail to generate T lymphocytes but differentiate into myeloid cells while coculturing with Notch ligand-expressing bone marrow stromal cells in vitro. Moreover, in vivo hematopoietic reconstitution of CD34(+) progenitor cells derived from either Notch1(-/-) or Pofut1(-/-) embryonic stem cells show enhanced granulopoiesis with depressed lymphoid lineage development. Together, these results indicate that Notch signaling maintains hematopoietic lineage homeostasis by promoting lymphoid development and suppressing overt myelopoiesis, in part through processes controlled by O-linked fucosylation of Notch receptors.


Cancer Research | 2016

Aberrant Notch Signaling in the Bone Marrow Microenvironment of Acute Lymphoid Leukemia Suppresses Osteoblast-Mediated Support of Hematopoietic Niche Function

Weihuan Wang; Grant Zimmerman; Xiaoran Huang; Shuiliang Yu; Jay Myers; Yiwei Wang; Stephen Moreton; Joseph Nthale; Amad Awadallah; Rose C. Beck; Wei Xin; David Wald; Alex Y. Huang; Lan Zhou

More than half of T-cell acute lymphoblastic leukemia (T-ALL) patients harbor gain-of-function mutations in the intracellular domain of Notch1. Diffuse infiltration of the bone marrow commonly occurs in T-ALL and relapsed B-cell acute lymphoblastic leukemia patients, and is associated with worse prognosis. However, the mechanism of leukemia outgrowth in the marrow and the resulting biologic impact on hematopoiesis are poorly understood. Here, we investigated targetable cellular and molecular abnormalities in leukemia marrow stroma responsible for the suppression of normal hematopoiesis using a T-ALL mouse model and human T-ALL xenografts. We found that actively proliferating leukemia cells inhibited normal hematopoietic stem and progenitor cell (HSPC) proliferation and homing to the perivascular region. In addition, leukemia development was accompanied by the suppression of the endosteum-lining osteoblast population. We further demonstrated that aberrant Notch activation in the stroma plays an important role in negatively regulating the expression of CXLC12 on osteoblasts and their differentiation. Notch blockade reversed attenuated HSPC cycling, leukemia-associated abnormal blood lineage distribution, and thrombocytopenia as well as recovered osteoblast and HSPC abundance and improved the hematopoietic-supportive functions of osteoblasts. Finally, we confirmed that reduced osteoblast frequency and enhanced Notch signaling were also features of the marrow stroma of human ALL tissues. Collectively, our findings suggest that therapeutically targeting the leukemia-infiltrated hematopoietic niche may restore HSPC homeostasis and improve the outcome of ALL patients.


Experimental Neurology | 2015

Focal transient CNS vessel leak provides a tissue niche for sequential immune cell accumulation during the asymptomatic phase of EAE induction

Deborah Barkauskas; R. Dixon Dorand; Jay Myers; Teresa A. Evans; Kestutis Barkauskas; David Askew; Robert Purgert; Alex Y. Huang

Peripheral immune cells are critical to the pathogenesis of neurodegenerative diseases including multiple sclerosis (MS) (Hendriks et al., 2005; Kasper and Shoemaker, 2010). However, the precise sequence of tissue events during the early asymptomatic induction phase of experimental autoimmune encephalomyelitis (EAE) pathogenesis remains poorly defined. Due to the spatial-temporal constrains of traditional methods used to study this disease, most studies had been performed in the spine during peak clinical disease; thus the debate continues as to whether tissue changes such as vessel disruption represent a cause or a byproduct of EAE pathophysiology in the cortex. Here, we provide dynamic, high-resolution information on the evolving structural and cellular processes within the gray matter of the mouse cortex during the first 12 asymptomatic days of EAE induction. We observed that transient focal vessel disruptions precede microglia activation, followed by infiltration of and directed interaction between circulating dendritic cells and T cells. Histamine antagonist minimizes but not completely ameliorates blood vessel leaks. Histamine H1 receptor blockade prevents early microglia function, resulting in subsequent reduction in immune cell accumulation, disease incidence and clinical severity.


Journal of Visualized Experiments | 2012

Intravital Imaging of the Mouse Popliteal Lymph Node

H. L. Rachel Liou; Jay Myers; Deborah Barkauskas; Alex Y. Huang

Lymph nodes (LNs) are secondary lymphoid organs, which are strategically located throughout the body to allow for trapping and presentation of foreign antigens from peripheral tissues to prime the adaptive immune response. Juxtaposed between innate and adaptive immune responses, the LN is an ideal site to study immune cell interactions1,2. Lymphocytes (T cells, B cells and NK cells), dendritic cells (DCs), and macrophages comprise the bulk of bone marrow-derived cellular elements of the LN. These cells are strategically positioned in the LN to allow efficient surveillance of self antigens and potential foreign antigens3-5. The process by which lymphocytes successfully encounter cognate antigens is a subject of intense investigation in recent years, and involves an integration of molecular contacts including antigen receptors, adhesion molecules, chemokines, and stromal structures such as the fibro-reticular network2,6-12. Prior to the development of high-resolution real-time fluorescent in vivo imaging, investigators relied on static imaging, which only offers answers regarding morphology, position, and architecture. While these questions are fundamental in our understanding of immune cell behavior, the limitations intrinsic with this technique does not permit analysis to decipher lymphocyte trafficking and environmental clues that affect dynamic cell behavior. Recently, the development of intravital two-photon laser scanning microscopy (2P-LSM) has allowed investigators to view the dynamic movements and interactions of individual cells within live LNs in situ12-16. In particular, we and others have applied this technique to image cellular behavior and interactions within the popliteal LN, where its compact, dense nature offers the advantage of multiplex data acquisition over a large tissue area with diverse tissue sub-structures11,17-18. It is important to note that this technique offers added benefits over explanted tissue imaging techniques, which require disruption of blood, lymph flow, and ultimately the cellular dynamics of the system. Additionally, explanted tissues have a very limited window of time in which the tissue remains viable for imaging after explant. With proper hydration and monitoring of the animals environmental conditions, the imaging time can be significantly extended with this intravital technique. Here, we present a detailed method of preparing mouse popliteal LN for the purpose of performing intravital imaging.

Collaboration


Dive into the Jay Myers's collaboration.

Top Co-Authors

Avatar

Alex Y. Huang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Deborah Barkauskas

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Frederick Allen

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Joseph Nthale

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Agne Petrosiute

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Lan Zhou

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Wei Xin

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Weihuan Wang

Case Western Reserve University

View shared research outputs
Top Co-Authors

Avatar

Xiaoran Huang

Case Western Reserve University

View shared research outputs
Researchain Logo
Decentralizing Knowledge