Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederick J. Cassels is active.

Publication


Featured researches published by Frederick J. Cassels.


Infection and Immunity | 2002

Safety and Immunogenicity of a Prototype Enterotoxigenic Escherichia coli Vaccine Administered Transcutaneously

Fernando Güereña-Burgueño; Eric R. Hall; David N. Taylor; Frederick J. Cassels; Daniel A. Scott; Marcia K. Wolf; Zachary J. Roberts; Galina V. Nesterova; Carl R. Alving; Gregory M. Glenn

ABSTRACT Transcutaneous immunization (TCI) is a new method for vaccine delivery that has been shown to induce immunity relevant to enteric disease vaccines. We evaluated the clinical safety and immunogenicity of a recombinant subunit vaccine against enterotoxigenic Escherichia coli (ETEC) delivered by TCI. Adult volunteers received patches containing the recombinant ETEC colonization factor CS6, either with heat-labile enterotoxin (LT) or patches containing CS6 alone. The vaccine was administered at 0, 1, and 3 months, and serum antibodies and antibody-secreting cells (ASCs) were assessed. Among the 26 volunteers that completed the trial, there were no responses to CS6 in the absence of LT. In the groups receiving both CS6 and LT, 68 and 53% were found to have serum anti-CS6 immunoglobulin G (IgG) and IgA, respectively; 37 and 42% had IgG and IgA anti-CS6 ASCs. All of the volunteers receiving LT had anti-LT IgG, and 90% had serum anti-LT IgA; 79 and 37% had anti-LT IgG and IgA ASCs. Delayed-type hypersensitivity (DTH), suggesting T-cell responses, was seen in 14 of 19 volunteers receiving LT and CS6; no DTH was seen in subjects receiving CS6 alone. This study demonstrated that protein antigens delivered by a simple patch could induce significant systemic immune responses but only in the presence of an adjuvant such as LT. The data suggest that an ETEC vaccine for travelers delivered by a patch may be a viable approach worthy of further evaluation.


Infection and Immunity | 2004

Evolutionary and Functional Relationships of Colonization Factor Antigen I and Other Class 5 Adhesive Fimbriae of Enterotoxigenic Escherichia coli

Ravi P. Anantha; Annette McVeigh; Lanfong H. Lee; Mary K. Agnew; Frederick J. Cassels; Daniel A. Scott; Thomas S. Whittam; Stephen J. Savarino

ABSTRACT Colonization factor antigen I (CFA/I) is the archetype of eight genetically related fimbriae of enterotoxigenic Escherichia coli (ETEC) designated class 5 fimbriae. Assembled by the alternate chaperone pathway, these organelles comprise a rigid stalk of polymerized major subunits and an apparently tip-localized minor adhesive subunit. We examined the evolutionary relationships of class 5-specific structural proteins and correlated these with functional properties. We sequenced the gene clusters encoding coli surface antigen 4 (CS4), CS14, CS17, CS19, and putative colonization factor antigen O71 (PCFO71) and analyzed the deduced proteins and the published homologs of CFA/I, CS1, and CS2. Multiple alignment and phylogenetic analysis of the proteins encoded by each operon define three subclasses, 5a (CFA/I, CS4, and CS14), 5b (CS1, CS17, CS19, and PCFO71), and 5c (CS2). These share distant evolutionary relatedness to fimbrial systems of three other genera. Subclass divisions generally correlate with distinguishing in vitro adherence phenotypes of strains bearing the ETEC fimbriae. Phylogenetic comparisons of the individual structural proteins demonstrated greater intrasubclass conservation among the minor subunits than the major subunits. To correlate this with functional attributes, we made antibodies against CFA/I and CS17 whole fimbriae and maltose-binding protein fusions with the amino-terminal half of the corresponding minor subunits. Anti-minor subunit Fab preparations showed hemagglutination inhibition (HAI) of ETEC expressing homologous and intrasubclass heterologous colonization factors while anti-fimbrial Fab fractions showed HAI activity limited to colonization factor-homologous ETEC. These results were corroborated with similar results from the Caco-2 cell adherence assay. Our findings suggest that the minor subunits of class 5 fimbriae may be superior to whole fimbriae in inducing antiadhesive immunity.


Vaccine | 2003

Oral immunization of adult volunteers with microencapsulated enterotoxigenic Escherichia coli (ETEC) CS6 antigen.

David E. Katz; Arthur J DeLorimier; Marcia K. Wolf; Eric R. Hall; Frederick J. Cassels; John E. van Hamont; Rhonda Newcomer; Mitra A Davachi; David N. Taylor; Charles E. McQueen

As a step in the development of an oral vaccine against ETEC, we evaluated the safety and immunogenicity of CS6, a polymeric protein commonly found on the surface of ETEC. Formulations included 1 and 5mg doses of CS6, either encapsulated in biodegradable polymer poly(D, L)-lactide-co-glycolide (PLG), or as free protein, administered orally in a solution of either normal saline or a rice-based buffer. Three doses of CS6 were given at 2-week intervals. Blood was collected immediately before and 7 days after each dose. All formulations were well tolerated. Four of five volunteers who received 1mg CS6 in PLG microspheres with buffer had significant IgA ASC responses (median=30 ASC per 10(6) PBMC) and significant serum IgG responses (median=3.5-fold increase). Oral administration of these prototype ETEC vaccine formulations are safe and can elicit immune responses. The ASC, serum IgA, and serum IgG responses to CS6 are similar in magnitude to the responses after challenge with wild-type ETEC [Coster et al., unpublished data]. Further studies are underway to determine whether these immune responses are sufficient for protection.


Journal of Industrial Microbiology & Biotechnology | 1995

Colonization factors of diarrheagenicE. coli and their intestinal receptors

Frederick J. Cassels; Mk Wolf

WhileEscherichia coli is common as a commensal organism in the distal ileum and colon, the presence of colonization factors (CF) on pathogenic strains ofE. coli facilitates attachment of the organism to intestinal receptor molecules in a species- and tissue-specific fashion. After the initial adherence, colonization occurs, and the involvement of additional virulence determinants leads to illness. EnterotoxigenicE. coli (ETEC) is the most extensively studied of the five categories ofE. coli that cause diarrheal disease, and has the greatest impact on health worldwide. ETEC can be isolated from domestic animals and humans. The biochemistry, genetics, epidemiology, antigenic characteristics, and cell and receptor binding properties of ETEC have been extensively described. Another major category, enteropathogenicE. coli (EPEC), has virulence mechanisms, primarily effacement and cytoskeletal rearrangement of intestinal brush borders, that are distinct from ETEC. An EPEC CF receptor has been purified and characterized as a sialidated transmembrane glycoprotein complex directly attached to actin, thereby associating CF-binding with host-cell response. Three, additional categories ofE. coli diarrheal disease, their colonization factors and their host cell receptors are discussed. It appears that biofilms exist in the intestine in a manner similar to oral bacterial biofilms, and thatE. coli is part of these biofilms as both commensals and pathogens.


Infection and Immunity | 2002

Transcutaneous Immunization Using Colonization Factor and Heat-Labile Enterotoxin Induces Correlates of Protective Immunity for Enterotoxigenic Escherichia coli

Jianmei Yu; Frederick J. Cassels; Tanya Scharton-Kersten; Scott A. Hammond; Antoinette B. Hartman; Evelina Angov; Blaise Corthésy; Carl R. Alving; Gregory M. Glenn

ABSTRACT Enterotoxigenic Escherichia coli (ETEC) diarrheal disease is a worldwide problem that may be addressed by transcutaneous delivery of a vaccine. In several human settings, protective immunity has been associated with immune responses to E. coli colonization factors and to the heat-labile toxin that induces the diarrhea. In this set of animal studies, transcutaneous immunization (TCI) using recombinant colonization factor CS6 and cholera toxin (CT) or heat-labile enterotoxin (LT) as the adjuvant induced immunoglobulin G (IgG) and IgA anti-CS6 responses in sera and stools and antibody responses that recognized CS6 antigen in its native configuration. The antitoxin immunity induced by TCI was also shown to protect against enteric toxin challenge. Although immunization with LT via the skin induced mucosal secretory IgA responses to LT, protection could also be achieved by intravenous injection of the immune sera. Finally, a malaria vaccine antigen, merzoite surface protein 142 administered with CT as the adjuvant, induced both merzoite surface protein antibodies and T-cell responses while conferring protective antitoxin immunity, suggesting that both antiparasitic activity and antidiarrheal activity can be obtained with a single vaccine formulation. Overall, our results demonstrate that relevant colonization factor and antitoxin immunity can be induced by TCI and suggest that an ETEC travelers diarrhea vaccine could be delivered by using a patch.


Infection and Immunity | 2007

Immune Response, Ciprofloxacin Activity, and Gender Differences after Human Experimental Challenge by Two Strains of Enterotoxigenic Escherichia coli

T. S. Coster; Marcia K. Wolf; Eric R. Hall; Frederick J. Cassels; David N. Taylor; C. T. Liu; Fernando Trespalacios; A. DeLorimier; D. R. Angleberger; Charles E. McQueen

ABSTRACT In order to test vaccines against enterotoxigenic Escherichia coli (ETEC)-induced diarrhea, challenge models are needed. In this study we compared clinical and immunological responses after North American volunteers were orally challenged by two ETEC strains. Groups of approximately eight volunteers received 109 or 1010 CFU of E. coli B7A (LT+ ST+ CS6+) or 108 or 109 CFU of E. coli H10407 (LT+ ST+ CFA/I+). About 75% of the volunteers developed diarrhea after challenge with 1010 CFU B7A or either dose of H10407. B7A had a shorter incubation period than H10407 (P = 0.001) and caused milder illness; the mean diarrheal output after H10407 challenge was nearly twice that after B7A challenge (P = 0.01). Females had more abdominal complaints, and males had a higher incidence of fever. Ciprofloxacin generally diminished or stopped symptoms and shedding by the second day of antibiotic treatment, but four subjects shed for one to four additional days. The immune responses to colonization factors CS6 and colonization factor antigen I (CFA/I) and to heat-labile toxin (LT) were measured. The responses to CFA/I were the most robust responses; all volunteers who received H10407 had serum immunoglobulin A (IgA) and IgG responses, and all but one volunteer had antibody-secreting cell (ASC) responses. One-half the volunteers who received B7A had an ASC response to CS6, and about one-third had serum IgA or IgG responses. Despite the differences in clinical illness and immune responses to colonization factors, the immune responses to LT were similar in all groups and were intermediate between the CFA/I and CS6 responses. These results provide standards for immune responses after ETEC vaccination.


Infection and Immunity | 2003

Pathogenicity and Immune Response Measured in Mice following Intranasal Challenge with Enterotoxigenic Escherichia coli Strains H10407 and B7A

Wyatt Byrd; Steven R. Mog; Frederick J. Cassels

ABSTRACT The pathogenicity and immunogenicity induced in BALB/c mice by intranasal (i.n.) inoculation of enterotoxigenic Escherichia coli (ETEC) strains H10407 (O78:H11:CFA/I:LT+:ST+) and B7A (O148:H28:CS6:LT+:ST+) (two ETEC strains previously used in human challenge trials) were studied. The i.n. inoculation of BALB/c mice with large doses of ETEC strains H10407 and B7A caused illness and death. The H10407 strain was found to be consistently more virulent than the B7A strain. Following i.n. challenge with nonlethal doses of H10407 and B7A, the bacteria were cleared from the lungs of the mice at a steady rate over a 2-week period. Macrophages and neutrophils were observed in the alveoli and bronchioles, and lymphocytes were observed in the septa, around vessels, and in the pleura of the lungs in mice challenged with H10407 and B7A. In mice i.n. challenged with H10407, serum immunoglobulin G (IgG) and IgM antibodies were measured at high titers to the CFA/I and O78 lipopolysaccharide (LPS) antigens. In mice i.n. challenged with B7A, low serum IgG antibody titers were detected against CS6, and low serum IgG and IgM antibody titers were detected against O148 LPS. The serum IgG and IgM antibody titers against the heat-labile enterotoxin were equivalent in the H10407- and B7A-challenged mice. The CFA/I and O78 LPS antigens gave mixed T-helper cell 1-T-helper cell 2 (Th1-Th2) responses in which the Th2 response was greater than the Th1 response (i.e., stimulated primarily an antibody response). These studies indicate that the i.n. challenge of BALB/c mice with ETEC strains may provide a useful animal model to better understand the immunogenicity and pathogenicity of ETEC and its virulence determinants. This model may also be useful in providing selection criteria for vaccine candidates for use in primate and human trials.


Vaccine | 2003

Murine antibody response to intranasally administered enterotoxigenic Escherichia coli colonization factor CS6.

Arthur J. de Lorimier; Wyatt Byrd; Eric R. Hall; William Vaughan; Douglas Tang; Zachary J. Roberts; Charles E. McQueen; Frederick J. Cassels

Enterotoxigenic Escherichia coli (ETEC) is the most common cause of bacterial diarrhea worldwide and is an important cause of infant morbidity and mortality in developing nations. ETEC colonization factors (CF) are virulence determinants that appear to be protective antigens in humans and are the major target of vaccine efforts. One of the most prevalent CF, CS6, is expressed by about 30% of ETEC worldwide. This study was designed to compare the immunogenicity between encapsulated CS6 (CS6-PLG) and unencapsulated CS6. Recombinant CS6 was purified and encapsulated in biodegradable poly(DL-lactide-co-glycolide) (PLG) microspheres using current Good Manufacturing Practices (cGMP). CS6-PLG and CS6 were administered intranasally (IN) to BALB/c mice in three vaccinations 4 weeks apart. Enzyme linked immunosorbent assay (ELISA) was used to measure the anti-CS6 response in serum and mucosal secretions following each of the three inoculations. Mice vaccinated with two or three doses of CS6-PLG demonstrated a significantly greater rise in serum anti-CS6 IgG and mucosal IgA titer values than those immunized with two or three doses of CS6 alone. Three doses of CS6-PLG led to anti-CS6 serum IgG and mucosal IgA titer values 14-fold and 4.4-fold greater, respectively, than three doses of CS6 (P<0.02). IN administered CS6 to mice is safe and highly immunogenic either alone or when encapsulated in microspheres. PLG microsphere encapsulation of CS6 significantly augments the antibody response to that antigen when administered to a mucosal surface.


Clinical and Vaccine Immunology | 2008

Randomized clinical trial assessing the safety and immunogenicity of oral microencapsulated enterotoxigenic Escherichia coli surface antigen 6 with or without heat-labile enterotoxin with mutation R192G.

Joyce Lapa; Stephanie A. Sincock; Madhumita Ananthakrishnan; Chad K. Porter; Frederick J. Cassels; Carl Brinkley; Eric R. Hall; John E. van Hamont; Joseph D. Gramling; Colleen M. Carpenter; Shahida Baqar; David R. Tribble

ABSTRACT An oral, microencapsulated anti-colonization factor 6 antigen (meCS6) vaccine, with or without heat-labile enterotoxin with mutation R192G (LTR192G) (mucosal adjuvant), against enterotoxigenic Escherichia coli (ETEC) was evaluated for regimen and adjuvant effects on safety and immunogenicity. Sixty subjects were enrolled into a three-dose, 2-week interval or four-dose, 2-day interval regimen. Each regimen was randomized into two equal groups of meCS6 alone (1 mg) or meCS6 with adjuvant (2 μg of LTR192G). The vaccine was well tolerated and no serious adverse events were reported. Serologic response to CS6 was low in all regimens (0 to 27%). CS6-immunogloublin A (IgA) antibody-secreting cell (ASC) responses ranged from 36 to 86%, with the highest level in the three-dose adjuvanted regimen; however, the magnitude was low. As expected, serologic and ASC LT responses were limited to adjuvanted regimens, with the exception of fecal IgA, which appeared to be nonspecific to LT administration. Further modifications to the delivery strategy and CS6 and adjuvant dose optimization will be needed before conducting further clinical trials with this epidemiologically important class of ETEC.


Journal of Industrial Microbiology & Biotechnology | 1995

Adhesin receptors of human oral bacteria and modeling of putative adhesin-binding domains

Frederick J. Cassels; C V Hughes; J L Nauss

Adherence by bacteria to a surface is critical to their survival in the human oral cavity. Many types of molecules are present in the saliva and serous exudates that form the acquired pellicle, a coating on the tooth surface, and serve as receptor molecules for adherent bacteria. The primary colonizing bacteria utilize adhesins to adhere to specific pellicle receptor molecules, then may adhere to other primary colonizers via adhesins, or may present receptor molecules to be utilized by secondary colonizing species. The most common primary colonizing bacteria are streptococci, and six streptococcal cell wall polysaccharide receptor molecules have been structurally characterized. A comparison of the putative adhesin disaccharide-binding regions of the six polysaccharides suggests three groups. A representative of each group was modeled in molecular dynamics simulations. In each case it was found that a loop formed between the galactofuranoseß (Galfß) and an oxygen of the nearest phosphate group on the reducing side of the Galfß, that this loop was stabilized by hydrogen bonds, and that within each loop resides the putative disaccharide-binding domain.

Collaboration


Dive into the Frederick J. Cassels's collaboration.

Top Co-Authors

Avatar

Gregory M. Glenn

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Wyatt Byrd

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Eric R. Hall

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

Charles E. McQueen

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Marcia K. Wolf

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Edgar C. Boedeker

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Robert H. Reid

Walter Reed Army Institute of Research

View shared research outputs
Top Co-Authors

Avatar

Arthur J. de Lorimier

Walter Reed Army Medical Center

View shared research outputs
Top Co-Authors

Avatar

Daniel A. Scott

Naval Medical Research Center

View shared research outputs
Top Co-Authors

Avatar

John E. van Hamont

Walter Reed Army Institute of Research

View shared research outputs
Researchain Logo
Decentralizing Knowledge