Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederik Roels is active.

Publication


Featured researches published by Frederik Roels.


Nature | 2014

Activation and repression by oncogenic MYC shape tumour-specific gene expression profiles

Susanne Walz; Francesca Lorenzin; Jennifer P. Morton; Katrin E. Wiese; Björn von Eyss; Steffi Herold; Lukas Rycak; Hélène Dumay-Odelot; Saadia A. Karim; Marek Bartkuhn; Frederik Roels; Torsten Wüstefeld; Matthias Fischer; Martin Teichmann; Lars Zender; Chia-Lin Wei; Owen J. Sansom; Elmar Wolf; Martin Eilers

In mammalian cells, the MYC oncoprotein binds to thousands of promoters. During mitogenic stimulation of primary lymphocytes, MYC promotes an increase in the expression of virtually all genes. In contrast, MYC-driven tumour cells differ from normal cells in the expression of specific sets of up- and downregulated genes that have considerable prognostic value. To understand this discrepancy, we studied the consequences of inducible expression and depletion of MYC in human cells and murine tumour models. Changes in MYC levels activate and repress specific sets of direct target genes that are characteristic of MYC-transformed tumour cells. Three factors account for this specificity. First, the magnitude of response parallels the change in occupancy by MYC at each promoter. Functionally distinct classes of target genes differ in the E-box sequence bound by MYC, suggesting that different cellular responses to physiological and oncogenic MYC levels are controlled by promoter affinity. Second, MYC both positively and negatively affects transcription initiation independent of its effect on transcriptional elongation. Third, complex formation with MIZ1 (also known as ZBTB17) mediates repression of multiple target genes by MYC and the ratio of MYC and MIZ1 bound to each promoter correlates with the direction of response.


Nature | 2015

Telomerase activation by genomic rearrangements in high-risk neuroblastoma

Martin Peifer; Falk Hertwig; Frederik Roels; Daniel Dreidax; Moritz Gartlgruber; Roopika Menon; Andrea Krämer; Justin L. Roncaioli; Frederik Sand; Johannes M. Heuckmann; Fakhera Ikram; Rene Schmidt; Sandra Ackermann; Anne Engesser; Yvonne Kahlert; Wenzel Vogel; Janine Altmüller; Peter Nürnberg; Jean Thierry-Mieg; Danielle Thierry-Mieg; Aruljothi Mariappan; Stefanie Heynck; Erika Mariotti; Kai-Oliver Henrich; Christian Gloeckner; Graziella Bosco; Ivo Leuschner; Michal R. Schweiger; Larissa Savelyeva; Simon C. Watkins

Neuroblastoma is a malignant paediatric tumour of the sympathetic nervous system. Roughly half of these tumours regress spontaneously or are cured by limited therapy. By contrast, high-risk neuroblastomas have an unfavourable clinical course despite intensive multimodal treatment, and their molecular basis has remained largely elusive. Here we have performed whole-genome sequencing of 56 neuroblastomas (high-risk, n = 39; low-risk, n = 17) and discovered recurrent genomic rearrangements affecting a chromosomal region at 5p15.33 proximal of the telomerase reverse transcriptase gene (TERT). These rearrangements occurred only in high-risk neuroblastomas (12/39, 31%) in a mutually exclusive fashion with MYCN amplifications and ATRX mutations, which are known genetic events in this tumour type. In an extended case series (n = 217), TERT rearrangements defined a subgroup of high-risk tumours with particularly poor outcome. Despite a large structural diversity of these rearrangements, they all induced massive transcriptional upregulation of TERT. In the remaining high-risk tumours, TERT expression was also elevated in MYCN-amplified tumours, whereas alternative lengthening of telomeres was present in neuroblastomas without TERT or MYCN alterations, suggesting that telomere lengthening represents a central mechanism defining this subtype. The 5p15.33 rearrangements juxtapose the TERT coding sequence to strong enhancer elements, resulting in massive chromatin remodelling and DNA methylation of the affected region. Supporting a functional role of TERT, neuroblastoma cell lines bearing rearrangements or amplified MYCN exhibited both upregulated TERT expression and enzymatic telomerase activity. In summary, our findings show that remodelling of the genomic context abrogates transcriptional silencing of TERT in high-risk neuroblastoma and places telomerase activation in the centre of transformation in a large fraction of these tumours.


Cancer Cell | 2013

Small Molecule Inhibitors of Aurora-A Induce Proteasomal Degradation of N-Myc in Childhood Neuroblastoma.

Markus Brockmann; Evon Poon; Teeara Berry; Anne Carstensen; Hedwig E. Deubzer; Lukas Rycak; Yann Jamin; Khin Thway; Simon P. Robinson; Frederik Roels; Olaf Witt; Matthias Fischer; Louis Chesler; Martin Eilers

Amplification of MYCN is a driver mutation in a subset of human neuroendocrine tumors, including neuroblastoma. No small molecules that target N-Myc, the protein encoded by MYCN, are clinically available. N-Myc forms a complex with the Aurora-A kinase, which protects N-Myc from proteasomal degradation. Although stabilization of N-Myc does not require the catalytic activity of Aurora-A, we show here that two Aurora-A inhibitors, MLN8054 and MLN8237, disrupt the Aurora-A/N-Myc complex and promote degradation of N-Myc mediated by the Fbxw7 ubiquitin ligase. Disruption of the Aurora-A/N-Myc complex inhibits N-Myc-dependent transcription, correlating with tumor regression and prolonged survival in a mouse model of MYCN-driven neuroblastoma. We conclude that Aurora-A is an accessible target that makes destabilization of N-Myc a viable therapeutic strategy.


Nature Genetics | 2015

Mutational dynamics between primary and relapse neuroblastomas

Alexander Schramm; Johannes Köster; Yassen Assenov; Kristina Althoff; Martin Peifer; Ellen Mahlow; Andrea Odersky; Daniela Beisser; Corinna Ernst; Anton Henssen; Harald Stephan; Christopher Schröder; Lukas C. Heukamp; Anne Engesser; Yvonne Kahlert; Jessica Theissen; Barbara Hero; Frederik Roels; Janine Altmüller; Peter Nürnberg; Kathy Astrahantseff; Christian Gloeckner; Katleen De Preter; Christoph Plass; Sangkyun Lee; Holger N. Lode; Kai Oliver Henrich; Moritz Gartlgruber; Frank Speleman; Peter Schmezer

Neuroblastoma is a malignancy of the developing sympathetic nervous system that is often lethal when relapse occurs. We here used whole-exome sequencing, mRNA expression profiling, array CGH and DNA methylation analysis to characterize 16 paired samples at diagnosis and relapse from individuals with neuroblastoma. The mutational burden significantly increased in relapsing tumors, accompanied by altered mutational signatures and reduced subclonal heterogeneity. Global allele frequencies at relapse indicated clonal mutation selection during disease progression. Promoter methylation patterns were consistent over disease course and were patient specific. Recurrent alterations at relapse included mutations in the putative CHD5 neuroblastoma tumor suppressor, chromosome 9p losses, DOCK8 mutations, inactivating mutations in PTPN14 and a relapse-specific activity pattern for the PTPN14 target YAP. Recurrent new mutations in HRAS, KRAS and genes mediating cell-cell interaction in 13 of 16 relapse tumors indicate disturbances in signaling pathways mediating mesenchymal transition. Our data shed light on genetic alteration frequency, identity and evolution in neuroblastoma.


Genome Biology | 2015

Comparison of RNA-seq and microarray-based models for clinical endpoint prediction

Wenqian Zhang; Falk Hertwig; Jean Thierry-Mieg; Wenwei Zhang; Danielle Thierry-Mieg; Jian Wang; Cesare Furlanello; Viswanath Devanarayan; Jie Cheng; Youping Deng; Barbara Hero; Huixiao Hong; Meiwen Jia; Li Li; Simon Lin; Yuri Nikolsky; André Oberthuer; Tao Qing; Zhenqiang Su; Ruth Volland; Charles Wang; May D. Wang; Junmei Ai; Davide Albanese; Shahab Asgharzadeh; Smadar Avigad; Wenjun Bao; Marina Bessarabova; Murray H. Brilliant; Benedikt Brors

BackgroundGene expression profiling is being widely applied in cancer research to identify biomarkers for clinical endpoint prediction. Since RNA-seq provides a powerful tool for transcriptome-based applications beyond the limitations of microarrays, we sought to systematically evaluate the performance of RNA-seq-based and microarray-based classifiers in this MAQC-III/SEQC study for clinical endpoint prediction using neuroblastoma as a model.ResultsWe generate gene expression profiles from 498 primary neuroblastomas using both RNA-seq and 44 k microarrays. Characterization of the neuroblastoma transcriptome by RNA-seq reveals that more than 48,000 genes and 200,000 transcripts are being expressed in this malignancy. We also find that RNA-seq provides much more detailed information on specific transcript expression patterns in clinico-genetic neuroblastoma subgroups than microarrays. To systematically compare the power of RNA-seq and microarray-based models in predicting clinical endpoints, we divide the cohort randomly into training and validation sets and develop 360 predictive models on six clinical endpoints of varying predictability. Evaluation of factors potentially affecting model performances reveals that prediction accuracies are most strongly influenced by the nature of the clinical endpoint, whereas technological platforms (RNA-seq vs. microarrays), RNA-seq data analysis pipelines, and feature levels (gene vs. transcript vs. exon-junction level) do not significantly affect performances of the models.ConclusionsWe demonstrate that RNA-seq outperforms microarrays in determining the transcriptomic characteristics of cancer, while RNA-seq and microarray-based models perform similarly in clinical endpoint prediction. Our findings may be valuable to guide future studies on the development of gene expression-based predictive models and their implementation in clinical practice.


Leukemia | 2009

The hematopoietic stem cell in chronic phase CML is characterized by a transcriptional profile resembling normal myeloid progenitor cells and reflecting loss of quiescence.

Ingmar Bruns; Czibere A; Johannes C. Fischer; Frederik Roels; Ron-Patrick Cadeddu; Buest S; D Bruennert; Huenerlituerkoglu An; Stoecklein Nh; Singh R; Zerbini Lf; Jäger M; Guido Kobbe; Norbert Gattermann; Ralf Kronenwett; Benedikt Brors; Rainer Haas

We found that composition of cell subsets within the CD34+ cell population is markedly altered in chronic phase (CP) chronic myeloid leukemia (CML). Specifically, proportions and absolute cell counts of common myeloid progenitors (CMP) and megakaryocyte–erythrocyte progenitors (MEP) are significantly greater in comparison to normal bone marrow whereas absolute numbers of hematopoietic stem cells (HSC) are equal. To understand the basis for this, we performed gene expression profiling (Affymetrix HU-133A 2.0) of the distinct CD34+ cell subsets from six patients with CP CML and five healthy donors. Euclidean distance analysis revealed a remarkable transcriptional similarity between the CML patients’ HSC and normal progenitors, especially CMP. CP CML HSC were transcriptionally more similar to their progeny than normal HSC to theirs, suggesting a more mature phenotype. Hence, the greatest differences between CP CML patients and normal donors were apparent in HSC including downregulation of genes encoding adhesion molecules, transcription factors, regulators of stem-cell fate and inhibitors of cell proliferation in CP CML. Impaired adhesive and migratory capacities were functionally corroborated by fibronectin detachment analysis and transwell assays, respectively. Based on our findings we propose a loss of quiescence of the CML HSC on detachment from the niche leading to expansion of myeloid progenitors.


Cell Death and Disease | 2013

Hox-C9 activates the intrinsic pathway of apoptosis and is associated with spontaneous regression in neuroblastoma

H Kocak; Sandra Ackermann; Barbara Hero; Yvonne Kahlert; André Oberthuer; Dilafruz Juraeva; Frederik Roels; Jessica Theissen; Frank Westermann; Hedwig E. Deubzer; Volker Ehemann; Benedikt Brors; M Odenthal; Frank Berthold; Matthias Fischer

Neuroblastoma is an embryonal malignancy of the sympathetic nervous system. Spontaneous regression and differentiation of neuroblastoma is observed in a subset of patients, and has been suggested to represent delayed activation of physiologic molecular programs of fetal neuroblasts. Homeobox genes constitute an important family of transcription factors, which play a fundamental role in morphogenesis and cell differentiation during embryogenesis. In this study, we demonstrate that expression of the majority of the human HOX class I homeobox genes is significantly associated with clinical covariates in neuroblastoma using microarray expression data of 649 primary tumors. Moreover, a HOX gene expression-based classifier predicted neuroblastoma patient outcome independently of age, stage and MYCN amplification status. Among all HOX genes, HOXC9 expression was most prominently associated with favorable prognostic markers. Most notably, elevated HOXC9 expression was significantly associated with spontaneous regression in infant neuroblastoma. Re-expression of HOXC9 in three neuroblastoma cell lines led to a significant reduction in cell viability, and abrogated tumor growth almost completely in neuroblastoma xenografts. Neuroblastoma growth arrest was related to the induction of programmed cell death, as indicated by an increase in the sub-G1 fraction and translocation of phosphatidylserine to the outer membrane. Programmed cell death was associated with the release of cytochrome c from the mitochondria into the cytosol and activation of the intrinsic cascade of caspases, indicating that HOXC9 re-expression triggers the intrinsic apoptotic pathway. Collectively, our results show a strong prognostic impact of HOX gene expression in neuroblastoma, and may point towards a role of Hox-C9 in neuroblastoma spontaneous regression.


Nature | 2016

Multiple mechanisms disrupt the let-7 microRNA family in neuroblastoma

John T. Powers; Kaloyan M. Tsanov; Daniel S. Pearson; Frederik Roels; Catherine Spina; Richard H. Ebright; Marc T. Seligson; Yvanka de Soysa; Patrick Cahan; Jessica Theißen; Ho Chou Tu; Areum Han; Kyle C. Kurek; Grace S. LaPier; Jihan K. Osborne; Samantha J. Ross; Marcella Cesana; James J. Collins; Frank Berthold; George Q. Daley

Poor prognosis in neuroblastoma is associated with genetic amplification of MYCN. MYCN is itself a target of let-7, a tumour suppressor family of microRNAs implicated in numerous cancers. LIN28B, an inhibitor of let-7 biogenesis, is overexpressed in neuroblastoma and has been reported to regulate MYCN. Here we show, however, that LIN28B is dispensable in MYCN-amplified neuroblastoma cell lines, despite de-repression of let-7. We further demonstrate that MYCN messenger RNA levels in amplified disease are exceptionally high and sufficient to sponge let-7, which reconciles the dispensability of LIN28B. We found that genetic loss of let-7 is common in neuroblastoma, inversely associated with MYCN amplification, and independently associated with poor outcomes, providing a rationale for chromosomal loss patterns in neuroblastoma. We propose that let-7 disruption by LIN28B, MYCN sponging, or genetic loss is a unifying mechanism of neuroblastoma development with broad implications for cancer pathogenesis.


Journal of Clinical Oncology | 2013

Iodine-123 Metaiodobenzylguanidine Scintigraphy Scoring Allows Prediction of Outcome in Patients With Stage 4 Neuroblastoma: Results of the Cologne Interscore Comparison Study

Boris Decarolis; Christina Schneider; Barbara Hero; Thorsten Simon; Ruth Volland; Frederik Roels; Markus Dietlein; Frank Berthold; Matthias Schmidt

PURPOSE Radioiodinated metaiodobenzylguanidine ((123)I-mIBG) scintigraphy is an established imaging method in neuroblastoma. Semiquantitative scoring systems have been developed to assess the extent of disease and response to chemotherapy. We present the results of the comparison between the SIOPEN [International Society of Pediatric Oncology Europe Neuroblastoma Group] score and the modified Curie score. PATIENTS AND METHODS We retrospectively analyzed 147 mIBG scans of 58 patients older than 1 year of age with stage 4 neuroblastoma from German Neuroblastoma Trial NB97 that were assessed according to the SIOPEN and the Curie scoring method. mIBG examinations were performed at diagnosis and after four and six cycles of chemotherapy. RESULTS Scoring results were highly correlated between both methods, and interobserver reliability was excellent. A Curie score ≤ 2 and a SIOPEN score ≤ 4 (best cutoff) at diagnosis were correlated to significantly better event-free and overall survival compared with higher scores. After four cycles of chemotherapy, overall survival was significantly better for mIBG-negative patients compared with those with any residual mIBG-positive metastases. After six cycles of chemotherapy, there was no difference in survival between mIBG-negative patients and patients with residual mIBG-positive metastases. Patients without mIBG-positive metastases after four and six cycles of chemotherapy had a better overall survival, but late clearance of mIBG-positive metastases did not improve outcome. CONCLUSION Higher mIBG scores at diagnosis and occurrence of any residual mIBG-positive metastases after four cycles of chemotherapy predicted unfavorable outcome for patients with stage 4 neuroblastoma. Later clearance of metastases did not improve prognosis. The Curie and the SIOPEN score were equally reliable and predictive.


The EMBO Journal | 2012

AATF/Che-1 acts as a phosphorylation-dependent molecular modulator to repress p53-driven apoptosis.

Katja Höpker; Henning Hagmann; Safiya Khurshid; Shuhua Chen; Pia Hasskamp; Tamina Seeger-Nukpezah; Katharina Schilberg; Lukas C. Heukamp; Tobias Lamkemeyer; Martin L. Sos; Roman K. Thomas; Drew M. Lowery; Frederik Roels; Matthias Fischer; Max C. Liebau; Ulrike Resch; Tülay Kisner; Fabian Röther; Malte P. Bartram; Roman Ulrich Müller; Francesca Fabretti; Peter Kurschat; Björn Schumacher; Matthias Gaestel; René H. Medema; Michael B. Yaffe; Bernhard Schermer; H. Christian Reinhardt; Thomas Benzing

Following genotoxic stress, cells activate a complex signalling network to arrest the cell cycle and initiate DNA repair or apoptosis. The tumour suppressor p53 lies at the heart of this DNA damage response. However, it remains incompletely understood, which signalling molecules dictate the choice between these different cellular outcomes. Here, we identify the transcriptional regulator apoptosis‐antagonizing transcription factor (AATF)/Che‐1 as a critical regulator of the cellular outcome of the p53 response. Upon genotoxic stress, AATF is phosphorylated by the checkpoint kinase MK2. Phosphorylation results in the release of AATF from cytoplasmic MRLC3 and subsequent nuclear translocation where AATF binds to the PUMA, BAX and BAK promoter regions to repress p53‐driven expression of these pro‐apoptotic genes. In xenograft experiments, mice exhibit a dramatically enhanced response of AATF‐depleted tumours following genotoxic chemotherapy with adriamycin. The exogenous expression of a phospho‐mimicking AATF point mutant results in marked adriamycin resistance in vivo. Nuclear AATF enrichment appears to be selected for in p53‐proficient endometrial cancers. Furthermore, focal copy number gains at the AATF locus in neuroblastoma, which is known to be almost exclusively p53‐proficient, correlate with an adverse prognosis and reduced overall survival. These data identify the p38/MK2/AATF signalling module as a critical repressor of p53‐driven apoptosis and commend this pathway as a target for DNA damage‐sensitizing therapeutic regimens.

Collaboration


Dive into the Frederik Roels's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Frank Westermann

German Cancer Research Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge