Frederik Verweij
VU University Medical Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Frederik Verweij.
Cell | 2015
Anoek Zomer; Carrie Maynard; Frederik Verweij; Alwin Kamermans; Ronny Schäfer; Evelyne Beerling; Raymond M. Schiffelers; Elzo de Wit; Jordi Berenguer; Saskia I. J. Ellenbroek; Thomas Wurdinger; Dirk Michiel Pegtel; Jacco van Rheenen
Summary Most cancer cells release heterogeneous populations of extracellular vesicles (EVs) containing proteins, lipids, and nucleic acids. In vitro experiments showed that EV uptake can lead to transfer of functional mRNA and altered cellular behavior. However, similar in vivo experiments remain challenging because cells that take up EVs cannot be discriminated from non-EV-receiving cells. Here, we used the Cre-LoxP system to directly identify tumor cells that take up EVs in vivo. We show that EVs released by malignant tumor cells are taken up by less malignant tumor cells located within the same and within distant tumors and that these EVs carry mRNAs involved in migration and metastasis. By intravital imaging, we show that the less malignant tumor cells that take up EVs display enhanced migratory behavior and metastatic capacity. We postulate that tumor cells locally and systemically share molecules carried by EVs in vivo and that this affects cellular behavior.
Stem Cell Research & Therapy | 2015
Serena Rubina Baglìo; Koos Rooijers; Danijela Koppers-Lalic; Frederik Verweij; M Pérez Lanzón; Nicoletta Zini; Benno Naaijkens; Francesca Perut; Hans W.M. Niessen; Nicola Baldini; D. Michiel Pegtel
IntroductionAdministration of mesenchymal stem cells (MSCs) represents a promising treatment option for patients suffering from immunological and degenerative disorders. Accumulating evidence indicates that the healing effects of MSCs are mainly related to unique paracrine properties, opening opportunities for secretome-based therapies. Apart from soluble factors, MSCs release functional small RNAs via extracellular vesicles (EVs) that seem to convey essential features of MSCs. Here we set out to characterize the full small RNAome of MSC-produced exosomes.MethodsWe set up a protocol for isolating exosomes released by early passage adipose- (ASC) and bone marrow-MSCs (BMSC) and characterized them via electron microscopy, protein analysis and small RNA-sequencing. We developed a bioinformatics pipeline to define the exosome-enclosed RNA species and performed the first complete small RNA characterization of BMSCs and ASCs and their corresponding exosomes in biological replicates.ResultsOur analysis revealed that primary ASCs and BMSCs have highly similar small RNA expression profiles dominated by miRNAs and snoRNAs (together 64-71 %), of which 150–200 miRNAs are present at physiological levels. In contrast, the miRNA pool in MSC exosomes is only 2-5 % of the total small RNAome and is dominated by a minor subset of miRNAs. Nevertheless, the miRNAs in exosomes do not merely reflect the cellular content and a defined set of miRNAs are overrepresented in exosomes compared to the cell of origin. Moreover, multiple highly expressed miRNAs are precluded from exosomal sorting, consistent with the notion that these miRNAs are involved in functional repression of RNA targets. While ASC and BMSC exosomes are similar in RNA class distribution and composition, we observed striking differences in the sorting of evolutionary conserved tRNA species that seems associated with the differentiation status of MSCs, as defined by Sox2, POU5F1A/B and Nanog expression.ConclusionsWe demonstrate that primary MSCs release small RNAs via exosomes, which are increasingly implicated in intercellular communications. tRNAs species, and in particular tRNA halves, are preferentially released and their specific sorting into exosomes is related to MSC tissue origin and stemness. These findings may help to understand how MSCs impact neighboring or distant cells with possible consequences for their therapeutic usage.
The EMBO Journal | 2011
Frederik Verweij; Monique van Eijndhoven; Erik S. Hopmans; Tineke Vendrig; Tom Wurdinger; Ellen Cahir-McFarland; Elliott Kieff; Dirk Geerts; Rik van der Kant; Jacques Neefjes; Jaap M. Middeldorp; D. Michiel Pegtel
The ubiquitous Epstein Barr virus (EBV) exploits human B‐cell development to establish a persistent infection in ∼90% of the world population. Constitutive activation of NF‐κB by the viral oncogene latent membrane protein 1 (LMP1) has an important role in persistence, but is a risk factor for EBV‐associated lymphomas. Here, we demonstrate that endogenous LMP1 escapes degradation upon accumulation within intraluminal vesicles of multivesicular endosomes and secretion via exosomes. LMP1 associates and traffics with the intracellular tetraspanin CD63 into vesicles that lack MHC II and sustain low cholesterol levels, even in ‘cholesterol‐trapping’ conditions. The lipid‐raft anchoring sequence FWLY, nor ubiquitylation of the N‐terminus, controls LMP1 sorting into exosomes. Rather, C‐terminal modifications that retain LMP1 in Golgi compartments preclude assembly within CD63‐enriched domains and/or exosomal discharge leading to NF‐κB overstimulation. Interference through shRNAs further proved the antagonizing role of CD63 in LMP1‐mediated signalling. Thus, LMP1 exploits CD63‐enriched microdomains to restrain downstream NF‐κB activation by promoting trafficking in the endosomal‐exosomal pathway. CD63 is thus a critical mediator of LMP1 function in‐ and outside‐infected (tumour) cells.
Nature Methods | 2017
Jan Van Deun; Pieter Mestdagh; Patrizia Agostinis; Özden Akay; Sushma Anand; Jasper Anckaert; Zoraida Andreu Martinez; Tine Baetens; Els Beghein; Laurence Bertier; Geert Berx; Janneke Boere; Stephanie Boukouris; Michel Bremer; Dominik Buschmann; James Brian Byrd; Clara Casert; Lesley Cheng; Anna Cmoch; Delphine Daveloose; Eva De Smedt; Seyma Demirsoy; Victoria Depoorter; Bert Dhondt; Tom A. P. Driedonks; Aleksandra M. Dudek; Abdou ElSharawy; Ilaria Floris; Andrew D. Foers; Kathrin Gärtner
We argue that the field of extracellular vesicle (EV) biology needs more transparent reporting to facilitate interpretation and replication of experiments. To achieve this, we describe EV-TRACK, a crowdsourcing knowledgebase (http://evtrack.org) that centralizes EV biology and methodology with the goal of stimulating authors, reviewers, editors and funders to put experimental guidelines into practice.
Communicative & Integrative Biology | 2012
Frederik Verweij; Jaap M. Middeldorp; D. Michiel Pegtel
Tight control of intracellular signaling is essential for developmental processes such as cell differentiation, migration but also for maintaining tissue homeostasis. Disruption in the control of these signaling pathways can result in cell death (apoptosis), anergy or uncontrolled cell proliferation and growth leading to cancer. In multicellular organisms, timely termination of signaling is thus equally important as initiation. Known pathways for downregulating membrane receptor-mediated signaling are mediated via specialized endosomal organelles known as lysosomes and proteosomes that degrade such proteins in the cytoplasm. An alternative pathway for attenuating receptor-mediated signaling was recently discovered independently by the group of M. Caplan and our own group.1,2 It appears that apart from the classical protein degradation machineries, the release of signaling proteins also effectively restricts signaling of at least two major signal transduction routes; the canonical Wnt/β-catenin and NFκB pathways. Expelling proteins from the cell, rather than coordinated degradation in lysosomes may involve defined protein modifications, such as ubiquitination, myristyolation, and/or palmitoylation, but little experimental data are currently available. Although the secretion of proteins via exosomes starts by accumulation within multivesicular bodies (MVBs), a key distinction with degredatory MVBs is that exosome-producing MVBs seem to preferentially fuse with the plasmamembrane (Fig. 1). Here we discuss the latest developments in the biology of exosomes and their unexpected effect on intracellular signal transduction.
Methods of Molecular Biology | 2013
Frederik Verweij; Monique van Eijndhoven; Jaap M. Middeldorp; D. Michiel Pegtel
The isolation and analysis of microRNAs (miRNAs) contained in microvesicles and in particular nano-sized exosomes has become an increasingly important tool to understand their widespread impact in various fundamental and interactive cellular processes. Fundamental studies regarding exosome biogenesis and miRNA sorting may ultimately unravel their potency as a promising class of highly specific disease biomarkers. Here we describe the methods and protocols used in our laboratory to isolate and purify exosomes, how we extract the (small) RNA content, how to analyze copy numbers, and finally how to measure exosome-mediated transfer of these molecules into recipient cells. Our techniques have been optimized for the detection of Epstein-Barr virus (EBV)-encoded miRNAs that are loaded into exosomes. We discuss how a focus on EBV-miRNA detection may yield important new clues into exosome-mediated cross talk by B cells in humans.
Journal of Cell Biology | 2018
Frederik Verweij; Maarten P. Bebelman; Connie R. Jimenez; Juan J. Garcia-Vallejo; Hans Janssen; Jacques Neefjes; Jaco C. Knol; Richard de Goeij-de Haas; Sander R. Piersma; S. Rubina Baglio; Matthijs Verhage; Jaap M. Middeldorp; Anoek Zomer; Jacco van Rheenen; Marc G. Coppolino; Ilse Hurbain; Graça Raposo; Martine J. Smit; Ruud F. Toonen; Guillaume van Niel; D. Michiel Pegtel
Exosomes are small endosome-derived extracellular vesicles implicated in cell–cell communication and are secreted by living cells when multivesicular bodies (MVBs) fuse with the plasma membrane (PM). Current techniques to study exosome physiology are based on isolation procedures after secretion, precluding direct and dynamic insight into the mechanics of exosome biogenesis and the regulation of their release. In this study, we propose real-time visualization of MVB–PM fusion to overcome these limitations. We designed tetraspanin-based pH-sensitive optical reporters that detect MVB–PM fusion using live total internal reflection fluorescence and dynamic correlative light–electron microscopy. Quantitative analysis demonstrates that MVB–PM fusion frequency is reduced by depleting the target membrane SNAREs SNAP23 and syntaxin-4 but also can be induced in single cells by stimulation of the histamine H1 receptor (H1HR). Interestingly, activation of H1R1 in HeLa cells increases Ser110 phosphorylation of SNAP23, promoting MVB–PM fusion and the release of CD63-enriched exosomes. Using this single-cell resolution approach, we highlight the modulatory dynamics of MVB exocytosis that will help to increase our understanding of exosome physiology and identify druggable targets in exosome-associated pathologies.
Oncotarget | 2016
Irene V. Bijnsdorp; Jasmina Hodzic; Tonny Lagerweij; Bart A. Westerman; Oscar Krijgsman; Jurjen Broeke; Frederik Verweij; R. Jonas A. Nilsson; Lawrence Rozendaal; Victor W. van Beusechem; Jeroen van Moorselaar; Thomas Wurdinger; Albert A. Geldof
The centrosome plays a key role in cancer invasion and metastasis. However, it is unclear how abnormal centrosome numbers are regulated when prostate cancer (PCa) cells become metastatic. CP110 was previously described for its contribution of centrosome amplification (CA) and early development of aggressive cell behaviour. However its regulation in metastatic cells remains unclear. Here we identified miR-129-3p as a novel metastatic microRNA. CP110 was identified as its target protein. In PCa cells that have metastatic capacity, CP110 expression was repressed by miR-129-3p. High miR-129-3p expression levels increased cell invasion, while increasing CP110 levels decreased cell invasion. Overexpression of CP110 in metastatic PCa cells resulted in a decrease in the number of metastasis. In tissues of PCa patients, low CP110 and high miR-129-3p expression levels correlated with metastasis, but not with the expression of genes related to EMT. Furthermore, overexpression of CP110 in metastatic PCa cells resulted in excessive-CA (E-CA), and a change in F-actin distribution which is in agreement with their reduced metastatic capacity. Our data demonstrate that miR-129-3p functions as a CA gatekeeper in metastatic PCa cells by maintaining pro-metastatic centrosome amplification (CA) and preventing anti-metastatic E-CA.
Rheumatology | 2015
Maja Bulatović Ćalasan; Sebastiaan J. Vastert; Rianne C. Scholman; Frederik Verweij; Mark Klein; Nico Wulffraat; Berent J. Prakken; Femke van Wijk
OBJECTIVE The balance between Treg and effector T cells (Teff) is crucial for immune regulation in JIA. How MTX, the cornerstone treatment in JIA, influences this balance in vivo is poorly elucidated. The aim of this study was to investigate quantitative and qualitative effects of MTX on Treg and Teff in JIA patients during MTX treatment. METHODS Peripheral blood samples were obtained from JIA patients at the start of MTX and 3 and 6 months thereafter. Treg numbers and phenotypes were determined by flow cytometry and suppressive function in allogeneic suppression assays. Teff proliferation upon stimulation with anti-CD3, activation status and intracellular cytokine production were determined by flow cytometry. Effector cell responsiveness to suppression was investigated in autologous suppression assays. Effector cell cytokines in supernatants of proliferation and suppression assays and in plasma were measured by cytokine multiplex assay. RESULTS MTX treatment in JIA did not affect Treg phenotype and function. Instead, MTX treatment enhanced, rather than diminished, CD4(+) and CD8(+) T cell proliferation of JIA patients after 6 months of therapy, independent of clinical response. Effector cells during MTX treatment were equally responsive to Treg-mediated suppression. MTX treatment did not attenuate Teff activation status and their capacity to produce IL-13, IL-17, TNF-α and IFN-γ. Similarly to Teff proliferation, plasma IFN-γ concentrations after 6 months were increased. CONCLUSION This study provides the novel insight that MTX treatment in JIA does not attenuate Teff function but, conversely, enhances T cell proliferation and IFN-γ plasma concentrations in JIA patients.
Journal of extracellular vesicles | 2015
Frederik Verweij; Cecilia de Heus; Stefanie Kroeze; Houjian Cai; Elliott Kieff; Sander R. Piersma; Connie R. Jimenez; Jaap M. Middeldorp; Dirk M. Pegtel
The Epstein–Barr virus (EBV)-encoded oncoprotein latent membrane protein 1 (LMP1) constitutively activates nuclear factor κB (NFκB) from intracellular membranes to promote cell growth and survival. LMP1 associates with CD63 in intracellular membranes and is released via exosomes. Whether tumour necrosis factor (TNF) receptor-associated factors (TRAFs) mediate LMP1 NFκB signalling from endosomes and modulate exosomal sorting is unknown. In this article, we show that LMP1–TRAF2 signalling complexes accumulate at endosomes in a palmitoylation-dependent manner, thereby driving LMP1-dependent oncogenicity. Palmitoylation is a reversible post-translational modification and is considered to function as a membrane anchor for proteins. Mutagenesis studies showed that LMP1–TRAF2 trafficking to endosomes is dependent on one single cysteine residue (C78), a known palmitoylation site of LMP1. Notably, growth assays in soft agar revealed that oncogenic properties of the palmitoylation-deficient LMP1 mutant C78A were diminished compared to wild-type LMP1. Since LMP1 recruitment of TRAF2 and downstream NFκB signalling were not affected by a disturbance in palmitoylation, the specific localization of LMP1 at endosomal membranes appears crucial for its transforming potential. The importance of palmitoylation for trafficking to and signalling from endosomal membranes was not restricted to LMP1, as similar observations were made for the cellular oncoproteins Src and Fyn. Despite abundant LMP1–TRAF2 association at endosomal membranes TRAF2 could not be detected in exosomes by Western blotting or proteomics. Interestingly, point mutations that prevented TRAF binding strongly promoted the sorting and release of LMP1 via exosomes. These observations reveal that LMP1–TRAF2 complexes at endosomes support oncogenic NFκB activation and suggest that LMP1 dissociates from the activated signalling complexes upon sorting into intraluminal vesicles. We propose that “signalling endosomes” in EBV-infected tumour cells can fuse with the plasma membrane, explaining LMP1 release via exosomes.