Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederike C. Oertel is active.

Publication


Featured researches published by Frederike C. Oertel.


Lancet Neurology | 2017

Retinal layer segmentation in multiple sclerosis: a systematic review and meta-analysis

Axel Petzold; Laura J. Balcer; Peter A. Calabresi; Fiona Costello; Teresa C. Frohman; Elliot M. Frohman; Elena H Martinez-Lapiscina; Ari J. Green; Randy H. Kardon; Olivier Outteryck; Friedemann Paul; Sven Schippling; P. Vermersch; Pablo Villoslada; Lisanne J. Balk; Orhan Aktas; Philipp Albrecht; Jane Ashworth; Nasrin Asgari; Laura Balcer; Graeme Black; Daniel Boehringer; Raed Behbehani; Leslie Benson; Robert A. Bermel; Jacqueline Bernard; Alexander U. Brandt; Jodie Burton; Jonathan Calkwood; Christian Cordano

BACKGROUND Structural retinal imaging biomarkers are important for early recognition and monitoring of inflammation and neurodegeneration in multiple sclerosis. With the introduction of spectral domain optical coherence tomography (SD-OCT), supervised automated segmentation of individual retinal layers is possible. We aimed to investigate which retinal layers show atrophy associated with neurodegeneration in multiple sclerosis when measured with SD-OCT. METHODS In this systematic review and meta-analysis, we searched for studies in which SD-OCT was used to look at the retina in people with multiple sclerosis with or without optic neuritis in PubMed, Web of Science, and Google Scholar between Nov 22, 1991, and April 19, 2016. Data were taken from cross-sectional cohorts and from one timepoint from longitudinal studies (at least 3 months after onset in studies of optic neuritis). We classified data on eyes into healthy controls, multiple-sclerosis-associated optic neuritis (MSON), and multiple sclerosis without optic neuritis (MSNON). We assessed thickness of the retinal layers and we rated individual layer segmentation performance by random effects meta-analysis for MSON eyes versus control eyes, MSNON eyes versus control eyes, and MSNON eyes versus MSON eyes. We excluded relevant sources of bias by funnel plots. FINDINGS Of 25 497 records identified, 110 articles were eligible and 40 reported data (in total 5776 eyes from patients with multiple sclerosis [1667 MSON eyes and 4109 MSNON eyes] and 1697 eyes from healthy controls) that met published OCT quality control criteria and were suitable for meta-analysis. Compared with control eyes, the peripapillary retinal nerve fibre layer (RNFL) showed thinning in MSON eyes (mean difference -20·10 μm, 95% CI -22·76 to -17·44; p<0·0001) and in MSNON eyes (-7·41 μm, -8·98 to -5·83; p<0·0001). The macula showed RNFL thinning of -6·18 μm (-8·07 to -4·28; p<0·0001) in MSON eyes and -2·15 μm (-3·15 to -1·15; p<0·0001) in MSNON eyes compared with control eyes. Atrophy of the macular ganglion cell layer and inner plexiform layer (GCIPL) was -16·42 μm (-19·23 to -13·60; p<0·0001) for MSON eyes and -6·31 μm (-7·75 to -4·87; p<0·0001) for MSNON eyes compared with control eyes. A small degree of inner nuclear layer (INL) thickening occurred in MSON eyes compared with control eyes (0·77 μm, 0·25 to 1·28; p=0·003). We found no statistical difference in the thickness of the combined outer nuclear layer and outer plexiform layer when we compared MSNON or MSON eyes with control eyes, but we found a small degree of thickening of the combined layer when we compared MSON eyes with MSNON eyes (1·21 μm, 0·24 to 2·19; p=0·01). INTERPRETATION The largest and most robust differences between the eyes of people with multiple sclerosis and control eyes were found in the peripapillary RNFL and macular GCIPL. Inflammatory disease activity might be captured by the INL. Because of the consistency, robustness, and large effect size, we recommend inclusion of the peripapillary RNFL and macular GCIPL for diagnosis, monitoring, and research. FUNDING None.


Multiple sclerosis and related disorders | 2017

Severe structural and functional visual system damage leads to profound loss of vision-related quality of life in patients with neuromyelitis optica spectrum disorders

Felix Schmidt; Hanna Zimmermann; Janine Mikolajczak; Frederike C. Oertel; Florence Pache; Maria Weinhold; Johann Schinzel; Judith Bellmann-Strobl; Klemens Ruprecht; Friedemann Paul; Alexander U. Brandt

BACKGROUND Neuromyelitis optica spectrum disorders (NMOSD) are characterized by devastating optic neuritis attacks causing more structural damage and visual impairment than in multiple sclerosis (MS). The objective of this study was to compare vision-related quality of life in NMOSD and MS patients and correlate it to structural retinal damage and visual function. METHODS Thirty-one NMOSD and 31 matched MS patients were included. Vision-related quality of life was assessed with the 39-item National Eye Institute Visual Function Questionnaire (NEI-VFQ). All patients underwent retinal optical coherence tomography and visual acuity and contrast sensitivity measurements. RESULTS Vision-related quality of life was reduced in NMOSD compared to MS patients. This difference was driven by a higher incidence of bilateral and more severe optic neuritis in the NMOSD group. Retinal thinning and visual impairment were significantly greater in the NMOSD cohort. Lower vision-related quality of life was associated with more retinal damage and reduced visual function as assessed by visual acuity and contrast sensitivity. CONCLUSION NMOSD-related bilateral ON-attacks cause severe structural damage and visual impairment that lead to severe loss of vision-related quality of life. The NEI-VFQ is a helpful tool to monitor vision-related quality of life in NMOSD patients.


Neuroimmunology and Neuroinflammation | 2017

Microstructural visual system changes in AQP4-antibody–seropositive NMOSD

Frederike C. Oertel; Joseph Kuchling; Hanna Zimmermann; Claudia Chien; Felix Schmidt; Benjamin Knier; Judith Bellmann-Strobl; Thomas Korn; Michael Scheel; Alexander Klistorner; Klemens Ruprecht; Friedemann Paul; Alexander U. Brandt

Objective: To trace microstructural changes in patients with aquaporin-4 antibody (AQP4-ab)-seropositive neuromyelitis optica spectrum disorders (NMOSDs) by investigating the afferent visual system in patients without clinically overt visual symptoms or visual pathway lesions. Methods: Of 51 screened patients with NMOSD from a longitudinal observational cohort study, we compared 6 AQP4-ab–seropositive NMOSD patients with longitudinally extensive transverse myelitis (LETM) but no history of optic neuritis (ON) or other bout (NMOSD-LETM) to 19 AQP4-ab–seropositive NMOSD patients with previous ON (NMOSD-ON) and 26 healthy controls (HCs). Foveal thickness (FT), peripapillary retinal nerve fiber layer (pRNFL) thickness, and ganglion cell and inner plexiform layer (GCIPL) thickness were measured with optical coherence tomography (OCT). Microstructural changes in the optic radiation (OR) were investigated using diffusion tensor imaging (DTI). Visual function was determined by high-contrast visual acuity (VA). OCT results were confirmed in a second independent cohort. Results: FT was reduced in both patients with NMOSD-LETM (p = 3.52e−14) and NMOSD-ON (p = 1.24e−16) in comparison with HC. Probabilistic tractography showed fractional anisotropy reduction in the OR in patients with NMOSD-LETM (p = 0.046) and NMOSD-ON (p = 1.50e−5) compared with HC. Only patients with NMOSD-ON but not NMOSD-LETM showed neuroaxonal damage in the form of pRNFL and GCIPL thinning. VA was normal in patients with NMOSD-LETM and was not associated with OCT or DTI parameters. Conclusions: Patients with AQP4-ab–seropositive NMOSD without a history of ON have microstructural changes in the afferent visual system. The localization of retinal changes around the Müller-cell rich fovea supports a retinal astrocytopathy.


JAMA Neurology | 2018

Association of Visual Impairment in Neuromyelitis Optica Spectrum Disorder With Visual Network Reorganization

Carsten Finke; Hanna Zimmermann; Florence Pache; Frederike C. Oertel; Velina Sevdalinova Chavarro; Yelyzaveta Kramarenko; Judith Bellmann-Strobl; Klemens Ruprecht; Alexander U. Brandt; Friedemann Paul

Importance Severe visual impairment is one of the major symptoms in neuromyelitis optica spectrum disorder (NMOSD), but functional network reorganization induced by the diminished sensory input has not been investigated thus far. Objective To examine adaptive visual network connectivity changes in NMOSD. Design, Setting, and Participants In this cross-sectional study, data were collected from May 1, 2013, through February 31, 2016, from 31 patients with aquaporin-4 antibody–positive NMOSD and 31 age- and sex-matched healthy control individuals at the Department of Neurology and NeuroCure Clinical Research Center at Charité–Universitätsmedizin Berlin, Berlin, Germany. Main Outcomes and Measures Visual function (high-contrast visual acuity and contrast sensitivity), optical coherence tomography (peripapillary retinal nerve fiber layer and ganglion cell layer thickness), and resting-state functional magnetic resonance imaging (functional connectivity of large-scale brain networks). Results Thirty-one patients with NMOSD (mean [SD] age, 48.2 [13.9] years; 28 women and 3 men) and 31 healthy controls (mean [SD] age, 47.2 [15.3] years; 28 women and 3 men) participated in the study. Patients had a selective and pronounced increase of functional connectivity in the primary and secondary visual networks. Increased primary visual network connectivity correlated with reduced high-contrast visual acuity (r = −0.39, P = .006), reduced low-contrast sensitivity (r = −0.33, P = .03), and more severe retinal damage measured by optical coherence tomography (r = −0.4, P = .01). Furthermore, visual functional connectivity was significantly higher in patients with a history of optic neuritis compared with patients without optic neuritis (mean [SD] regression coefficients, 50.0 [4.3] vs 34.6 [5.6]; P = .04). Conclusions and Relevance Impaired visual function and retinal damage are associated with selective reorganization of the visual network in NMOSD. These findings advance the understanding of visual system dysfunction in NMOSD and, more generally, provide insight into pathophysiologic responses of the visual system to impaired visual input.


The Epma Journal | 2018

Optical coherence tomography in neuromyelitis optica spectrum disorders: potential advantages for individualized monitoring of progression and therapy

Frederike C. Oertel; Hanna Zimmermann; Friedemann Paul; Alexander U. Brandt

Neuromyelitis optica spectrum disorders (NMOSD) are mostly relapsing inflammatory disorders of the central nervous system (CNS). Optic neuritis (ON) is the first NMOSD-related clinical event in 55% of the patients, which causes damage to the optic nerve and leads to visual impairment. Retinal optical coherence tomography (OCT) has emerged as a promising method for diagnosis of NMOSD and potential individual monitoring of disease course and severity. OCT not only detects damage to the afferent visual system caused by ON but potentially also NMOSD-specific intraretinal pathology, i.e. astrocytopathy. This article summarizes retinal involvement in NMOSD and reviews OCT methods that could be used now and in the future, for differential diagnosis, for monitoring of disease course, and in clinical trials.


Journal of Neurology, Neurosurgery, and Psychiatry | 2018

Retinal ganglion cell loss in neuromyelitis optica: a longitudinal study

Frederike C. Oertel; Joachim Havla; Adriana Roca-Fernández; Nathaniel Lizak; Hanna Zimmermann; Seyedamirhosein Motamedi; Nadja Borisow; Owen White; Judith Bellmann-Strobl; Philipp Albrecht; Klemens Ruprecht; Sven Jarius; Jacqueline Palace; M I Leite; Tania Kuempfel; Friedemann Paul; Alexander U. Brandt

Objectives Neuromyelitis optica spectrum disorders (NMOSD) are inflammatory conditions of the central nervous system and an important differential diagnosis of multiple sclerosis (MS). Unlike MS, the course is usually relapsing, and it is unclear, if progressive neurodegeneration contributes to disability. Therefore, we aimed to investigate if progressive retinal neuroaxonal damage occurs in aquaporin4-antibody-seropositive NMOSD. Methods Out of 157 patients with NMOSD screened, 94 eyes of 51 patients without optic neuritis (ON) during follow-up (F/U) and 56 eyes of 28 age-matched and sex-matched healthy controls (HC) were included (median F/U 2.3 years). The NMOSD cohort included 60 eyes without (EyeON −) and 34 eyes with a history of ON prior to enrolment (EyeON+). Peripapillary retinal nerve fibre layer thickness (pRNFL), fovea thickness (FT), volumes of the combined ganglion cell and inner plexiform layer (GCIP) and the inner nuclear layer (INL) and total macular volume (TMV) were acquired by optical coherence tomography (OCT). Results At baseline, GCIP, FT and TMV were reduced in EyeON+ (GCIP p<2e−16; FT p=3.7e−4; TMV p=3.7e−12) and in EyeON − (GCIP p=0.002; FT p=0.040; TMV p=6.1e−6) compared with HC. Longitudinally, we observed GCIP thinning in EyeON− (p=0.044) but not in EyeON+. Seven patients had attacks during F/U; they presented pRNFL thickening compared with patients without attacks (p=0.003). Conclusion This study clearly shows GCIP loss independent of ON attacks in aquaporin4-antibody-seropositive NMOSD. Potential explanations for progressive GCIP thinning include primary retinopathy, drug-induced neurodegeneration and retrograde neuroaxonal degeneration from lesions or optic neuropathy. pRNFL thickening in the patients presenting with attacks during F/U might be indicative of pRNFL susceptibility to inflammation.


Biomedical Optics Express | 2017

CuBe: parametric modeling of 3D foveal shape using cubic Bézier

Sunil Kumar Yadav; Seyedamirhosein Motamedi; Timm Oberwahrenbrock; Frederike C. Oertel; Konrad Polthier; Friedemann Paul; Ella Maria Kadas; Alexander U. Brandt

Optical coherence tomography (OCT) allows three-dimensional (3D) imaging of the retina, and is commonly used for assessing pathological changes of fovea and macula in many diseases. Many neuroinflammatory conditions are known to cause modifications to the fovea shape. In this paper, we propose a method for parametric modeling of the foveal shape. Our method exploits invariant features of the macula from OCT data and applies a cubic Bézier polynomial along with a least square optimization to produce a best fit parametric model of the fovea. Additionally, we provide several parameters of the foveal shape based on the proposed 3D parametric modeling. Our quantitative and visual results show that the proposed model is not only able to reconstruct important features from the foveal shape, but also produces less error compared to the state-of-the-art methods. Finally, we apply the model in a comparison of healthy control eyes and eyes from patients with neuroinflammatory central nervous system disorders and optic neuritis, and show that several derived model parameters show significant differences between the two groups.


NeuroImage: Clinical | 2018

Comparison of probabilistic tractography and tract-based spatial statistics for assessing optic radiation damage in patients with autoimmune inflammatory disorders of the central nervous system

Joseph Kuchling; Yael Backner; Frederike C. Oertel; Noa Raz; Judith Bellmann-Strobl; Klemens Ruprecht; Friedemann Paul; Netta Levin; Alexander U. Brandt; Michael Scheel

Background Diffusion Tensor Imaging (DTI) can evaluate microstructural tissue damage in the optic radiation (OR) of patients with clinically isolated syndrome (CIS), early relapsing-remitting multiple sclerosis and neuromyelitis optica spectrum disorders (NMOSD). Different post-processing techniques, e.g. tract-based spatial statistics (TBSS) and probabilistic tractography, exist to quantify this damage. Objective To evaluate the capacity of TBSS-based atlas region-of-interest (ROI) combination with 1) posterior thalamic radiation ROIs from the Johns Hopkins University atlas (JHU-TBSS), 2) Juelich Probabilistic ROIs (JUEL-TBSS) and tractography methods using 3) ConTrack (CON-PROB) and 4) constrained spherical deconvolution tractography (CSD-PROB) to detect OR damage in patients with a) NMOSD with prior ON (NMOSD-ON), b) CIS and early RRMS patients with ON (CIS/RRMS-ON) and c) CIS and early RRMS patients without prior ON (CIS/RRMS-NON) against healthy controls (HCs). Methods Twenty-three NMOSD-ON, 18 CIS/RRMS-ON, 21 CIS/RRMS-NON, and 26 HCs underwent 3 T MRI. DTI data analysis was carried out using JUEL-TBSS, JHU-TBSS, CON-PROB and CSD-PROB. Optical coherence tomography (OCT) and visual acuity testing was performed in the majority of patients and HCs. Results Absolute OR fractional anisotropy (FA) values differed between all methods but showed good correlation and agreement in Bland-Altman analysis. OR FA values between NMOSD and HC differed throughout the methodologies (p-values ranging from p < 0.0001 to 0.0043). ROC-analysis and effect size estimation revealed higher AUCs and R2 for CSD-PROB (AUC = 0.812; R2 = 0.282) and JHU-TBSS (AUC = 0.756; R2 = 0.262), compared to CON-PROB (AUC = 0.742; R2 = 0.179) and JUEL-TBSS (AUC = 0.719; R2 = 0.161). Differences between CIS/RRMS-NON and HC were only observable in CSD-PROB (AUC = 0.796; R2 = 0.094). No significant differences between CIS/RRMS-ON and HC were detected by any of the methods. Conclusions All DTI post-processing techniques facilitated the detection of OR damage in patient groups with severe microstructural OR degradation. The comparison of distinct disease groups by use of different methods may lead to different - either false-positive or false-negative - results. Since different DTI post-processing approaches seem to provide complementary information on OR damage, application of distinct methods may depend on the relevant research question.


Acta Neurologica Belgica | 2018

Retinal optical coherence tomography shows optic disc changes in low intracranial pressure headaches: a case report

Frederike C. Oertel; Francesca Bosello; Axel Petzold

The optic disc is examined at the bedside as a simple and non-invasive indirect indicator of potentially elevated intracranial pressure. There is a large degree of physiological variation of optic disc appearance, but optic disc swelling (also called optic disc oedema) typically prompts further investigations for causes of potentially raised intracranial pressure [1]. In fact, it is the change of the translaminar pressure gradient at level of the lamina cribrosa which is a sensitive interface between cerebrospinal fluid (CSF) pressure and intraocular pressure (IOP) [2]. Minor pressure changes on both sides can lead to optic disc shape changes, as for example shown for increased intracranial pressure in idiopathic intracranial hypertension (IIH), for increased IOP in glaucoma or even with low ICP in patients with normal tension glaucoma and primary open angle glaucoma [3, 4]. However, the literature on the contribution of ICP in glaucomatous optic nerve damage is controversial [3, 5] and optic disc imaging in patients affected by low ICP state is lacking. Here, we demonstrate by optical coherence tomography (OCT), a non-invasive high-resolution technique, the changes in the optic disc in one patient with a low-pressure headache. To the best of our knowledge, this is the first case report of OCT documented optic disc excavation in a patient with a low intracranial pressure headache thought to be caused by a CSF leak.


Journal of Neuroinflammation | 2016

MOG-IgG in NMO and related disorders: a multicenter study of 50 patients. Part 4: Afferent visual system damage after optic neuritis in MOG-IgG-seropositive versus AQP4-IgG-seropositive patients

Florence Pache; Hanna Zimmermann; Janine Mikolajczak; Sophie Schumacher; Anna Lacheta; Frederike C. Oertel; Judith Bellmann-Strobl; Sven Jarius; Brigitte Wildemann; Markus Reindl; Amy Waldman; Kerstin Soelberg; Nasrin Asgari; Marius Ringelstein; Orhan Aktas; Nikolai Gross; Mathias Buttmann; Thomas Ach; Klemens Ruprecht; Friedemann Paul; Alexander U. Brandt

Collaboration


Dive into the Frederike C. Oertel's collaboration.

Researchain Logo
Decentralizing Knowledge