Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Frederike D. Hanke is active.

Publication


Featured researches published by Frederike D. Hanke.


PLOS ONE | 2014

Feeding Kinematics, Suction, and Hydraulic Jetting Performance of Harbor Seals (Phoca vitulina)

Christopher D. Marshall; Sven Wieskotten; Wolf Hanke; Frederike D. Hanke; Alyssa Marsh; Brian W. Kot; Guido Dehnhardt

The feeding kinematics, suction and hydraulic jetting capabilities of captive harbor seals (Phoca vitulina) were characterized during controlled feeding trials. Feeding trials were conducted using a feeding apparatus that allowed a choice between biting and suction, but also presented food that could be ingested only by suction. Subambient pressure exerted during suction feeding behaviors was directly measured using pressure transducers. The mean feeding cycle duration for suction-feeding events was significantly shorter (0.15±0.09 s; P<0.01) than biting feeding events (0.18±0.08 s). Subjects feeding in-water used both a suction and a biting feeding mode. Suction was the favored feeding mode (84% of all feeding events) compared to biting, but biting comprised 16% of feeding events. In addition, seals occasionally alternated suction with hydraulic jetting, or used hydraulic jetting independently, to remove fish from the apparatus. Suction and biting feeding modes were kinematically distinct regardless of feeding location (in-water vs. on-land). Suction was characterized by a significantly smaller gape (1.3±0.23 cm; P<0.001) and gape angle (12.9±2.02°), pursing of the rostral lips to form a circular aperture, and pursing of the lateral lips to occlude lateral gape. Biting was characterized by a large gape (3.63±0.21 cm) and gape angle (28.8±1.80°; P<0.001) and lip curling to expose teeth. The maximum subambient pressure recorded was 48.8 kPa. In addition, harbor seals were able to jet water at food items using suprambient pressure, also known as hydraulic jetting. The maximum hydraulic jetting force recorded was 53.9 kPa. Suction and hydraulic jetting where employed 90.5% and 9.5%, respectively, during underwater feeding events. Harbor seals displayed a wide repertoire of behaviorally flexible feeding strategies to ingest fish from the feeding apparatus. Such flexibility of feeding strategies and biomechanics likely forms the basis of their opportunistic, generalized feeding ecology and concomitant breadth of diet.


NeuroImage | 2015

Understanding fiber mixture by simulation in 3D Polarized Light Imaging

Melanie Dohmen; Miriam Menzel; Hendrik Wiese; Julia Reckfort; Frederike D. Hanke; U. Pietrzyk; Karl Zilles; Katrin Amunts; Markus Axer

3D Polarized Light Imaging (3D-PLI) is a neuroimaging technique that has opened up new avenues to study the complex architecture of nerve fibers in postmortem brains. The spatial orientations of the fibers are derived from birefringence measurements of unstained histological brain sections that are interpreted by a voxel-based analysis. This, however, implies that a single fiber orientation vector is obtained for each voxel and reflects the net effect of all comprised fibers. The mixture of various fiber orientations within an individual voxel is a priori not accessible by a standard 3D-PLI measurement. In order to better understand the effects of fiber mixture on the measured 3D-PLI signal and to improve the interpretation of real data, we have developed a simulation method referred to as SimPLI. By means of SimPLI, it is possible to reproduce the entire 3D-PLI analysis starting from synthetic fiber models in user-defined arrangements and ending with measurement-like tissue images. For the simulation, each synthetic fiber is considered as an optical retarder, i.e., multiple fibers within one voxel are described by multiple retarder elements. The investigation of different synthetic crossing fiber arrangements generated with SimPLI demonstrated that the derived fiber orientations are strongly influenced by the relative mixture of crossing fibers. In case of perpendicularly crossing fibers, for example, the derived fiber direction corresponds to the predominant fiber direction. The derived fiber inclination turned out to be not only influenced by myelin density but also systematically overestimated due to signal attenuation. Similar observations were made for synthetic models of optic chiasms of a human and a hooded seal which were opposed to experimental 3D-PLI data sets obtained from the chiasms of both species. Our study showed that SimPLI is a powerful method able to test hypotheses on the underlying fiber structure of brain tissue and, therefore, to improve the reliability of the extraction of nerve fiber orientations with 3D-PLI.


Animal Cognition | 2013

A harbor seal can transfer the same/different concept to new stimulus dimensions

Christine Scholtyssek; Almut Kelber; Frederike D. Hanke; Guido Dehnhardt

We investigated the formation of an abstract concept of same/different in a harbor seal by means of a two-item same/different task. Stimuli were presented on a TFT monitor. The subject was trained to respond according to whether two horizontally aligned white shapes presented on a black background were the same, or different from each other, by giving a no-go or go response. Training comprised of four stages. First, the same/different task was trained with two shapes forming two same problems (A–A and B–B) and two different problems (A–B and B–A). After the learning criterion was reached, training proceeded with new pairs of shapes. In the second experimental stage, every problem was presented just five times before new problems were introduced. We showed that training to criterion with just two shapes resulted in item-specific learning, whereas reducing the number of presentations to five per problem led to the formation of a same/different learning set as well as some restricted relational learning. Training with trial-unique problems in the third stage of this study resulted in the formation of an abstract concept of same/different which was indicated by a highly significant performance in transfer tests with 120 novel problems. Finally, extra-dimensional transfer of the concept was tested. The harbor seal showed a significantly correct performance on transfer tests with 30 unfamiliar pattern and 60 unfamiliar brightness same/different problems, thus demonstrating that the concept is not restricted to the shape dimension originally learned, but can be generalized across stimulus dimensions.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2013

Are harbour seals (Phoca vitulina) able to perceive and use polarised light

Frederike D. Hanke; Lars Miersch; Eric J. Warrant; Fedor Mitschke; Guido Dehnhardt

Harbour seals are active at night and during the day and see well in both air and water. Polarised light, which is a well-known visual cue for orientation, navigation and foraging, is richly available in harbour seal habitats, both above and below the water surface. We hypothesised that an ability to detect and use polarised light could be valuable for seals, and thus tested if they are able to see this property of light. We performed two behavioural experiments, one involving object discrimination and the other involving object detection. These objects were presented to the seals as two-dimensional stimuli on a specially modified liquid crystal display that generated objects whose contrast was purely defined in terms of polarisation (i.e. objects lacked luminance contrast). In both experiments, the seals’ performance did not deviate significantly from chance. In contrast, the seals showed a high baseline performance when presented with objects on a non-modified display (whose contrast was purely defined in terms of luminance). We conclude that harbour seals are unable to use polarised light in our experimental context. It remains for future work to elucidate if they are polarisation insensitive per se.


PLOS ONE | 2014

Harbor Seals (Phoca vitulina) Can Perceive Optic Flow under Water

Nele Gläser; Björn Mauck; Farid I. Kandil; Markus Lappe; Guido Dehnhardt; Frederike D. Hanke

Optic flow, the pattern of apparent motion elicited on the retina during movement, has been demonstrated to be widely used by animals living in the aerial habitat, whereas underwater optic flow has not been intensively studied so far. However optic flow would also provide aquatic animals with valuable information about their own movement relative to the environment; even under conditions in which vision is generally thought to be drastically impaired, e. g. in turbid waters. Here, we tested underwater optic flow perception for the first time in a semi-aquatic mammal, the harbor seal, by simulating a forward movement on a straight path through a cloud of dots on an underwater projection. The translatory motion pattern expanded radially out of a singular point along the direction of heading, the focus of expansion. We assessed the seals accuracy in determining the simulated heading in a task, in which the seal had to judge whether a cross superimposed on the flow field was deviating from or congruent with the actual focus of expansion. The seal perceived optic flow and determined deviations from the simulated heading with a threshold of 0.6 deg of visual angle. Optic flow is thus a source of information seals, fish and most likely aquatic species in general may rely on for e. g. controlling locomotion and orientation under water. This leads to the notion that optic flow seems to be a tool universally used by any moving organism possessing eyes.


Frontiers in Physiology | 2017

Saccadic Movement Strategy in Common Cuttlefish (Sepia officinalis)

Desiree Helmer; Bart R. H. Geurten; Guido Dehnhardt; Frederike D. Hanke

Most moving animals segregate their locomotion trajectories in short burst like rotations and prolonged translations, to enhance distance information from optic flow, as only translational, but not rotational optic flow holds distance information. Underwater, optic flow is a valuable source of information as it is in the terrestrial habitat, however, so far, it has gained only little attention. To extend the knowledge on underwater optic flow perception and use, we filmed the movement pattern of six common cuttlefish (Sepia officinalis) with a high speed camera in this study. In the subsequent analysis, the center of mass of the cuttlefish body was manually traced to gain thrust, slip, and yaw of the cuttlefish movements over time. Cuttlefish indeed performed short rotations, saccades, with rotational velocities up to 343°/s. They clearly separated rotations from translations in line with the saccadic movement strategy documented for animals inhabiting the terrestrial habitat as well as for the semiaquatic harbor seals before. However, this separation only occurred during fin motion. In contrast, during jet propelled swimming, the separation between rotational and translational movements and thus probably distance estimation on the basis of the optic flow field is abolished in favor of high movement velocities. In conclusion, this study provides first evidence that an aquatic invertebrate, the cuttlefish, adopts a saccadic movement strategy depending on the behavioral context that could enhance the information gained from optic flow.


Anatomical Record-advances in Integrative Anatomy and Evolutionary Biology | 2016

A Comparative Morphometric Analysis of Three Cranial Nerves in Two Phocids: The Hooded Seal (Cystophora cristata) and the Harbor Seal (Phoca vitulina).

Dennis Wohlert; Jürgen Kröger; Martin Witt; Oliver Schmitt; Andreas Wree; Nicole U. Czech-Damal; Ursula Siebert; Lars P. Folkow; Frederike D. Hanke

While our knowledge about the senses of pinnipeds has increased over the last decades almost nothing is known about the organization of the neuroanatomical pathways. In a first approach to this field of research, we assessed the total number of myelinated axons of three cranial nerves (CNs) in the harbor (Phoca vitulina, Pv) and hooded seal (Cystophora cristata, Cc). Axons were counted in semithin sections of the nerves embedded in Epon and stained with toluidine blue. In both species, the highest axon number was found within the optic nerve (Pv 187,000 ± 8,000 axons, Cc 481,600 ± 1,300 axons). Generally, considering absolute axon numbers, far more axons were counted within the optic and trigmenial nerve (Pv 136,700 ± 2,500 axons, Cc 179,300 ± 6,900 axons) in hooded in comparison to harbor seals. The axon counts of the vestibulocochlear nerve are nearly identical for both species (Pv 87,100 ± 8,100 axons, Cc 86,600 ± 2,700 axons). However, when comparing cell density, the cell density is almost equal for all nerves for both species except for the optic nerve in which cell density was particularly higher than in the other nerves and higher in hooded in comparison to harbor seals. We here present the first comparative analysis of three CNs in two phocid seals. While the CNs of these closely related species share some general characteristics, pronounced differences in axon numbers/densities are apparent. These differences seem to reflect differences in e.g. size, habitat, and/or functional significance of the innervated sensory systems. Anat Rec, 299:370–378, 2016.


Frontiers in Physiology | 2017

Reconsideration of Serial Visual Reversal Learning in Octopus (Octopus vulgaris) from a Methodological Perspective

Alexander Bublitz; Severine R. Weinhold; Sophia Strobel; Guido Dehnhardt; Frederike D. Hanke

Octopuses (Octopus vulgaris) are generally considered to possess extraordinary cognitive abilities including the ability to successfully perform in a serial reversal learning task. During reversal learning, an animal is presented with a discrimination problem and after reaching a learning criterion, the signs of the stimuli are reversed: the former positive becomes the negative stimulus and vice versa. If an animal improves its performance over reversals, it is ascribed advanced cognitive abilities. Reversal learning has been tested in octopus in a number of studies. However, the experimental procedures adopted in these studies involved pre-training on the new positive stimulus after a reversal, strong negative reinforcement or might have enabled secondary cueing by the experimenter. These procedures could have all affected the outcome of reversal learning. Thus, in this study, serial visual reversal learning was revisited in octopus. We trained four common octopuses (O. vulgaris) to discriminate between 2-dimensional stimuli presented on a monitor in a simultaneous visual discrimination task and reversed the signs of the stimuli each time the animals reached the learning criterion of ≥80% in two consecutive sessions. The animals were trained using operant conditioning techniques including a secondary reinforcer, a rod that was pushed up and down the feeding tube, which signaled the correctness of a response and preceded the subsequent primary reinforcement of food. The experimental protocol did not involve negative reinforcement. One animal completed four reversals and showed progressive improvement, i.e., it decreased its errors to criterion the more reversals it experienced. This animal developed a generalized response strategy. In contrast, another animal completed only one reversal, whereas two animals did not learn to reverse during the first reversal. In conclusion, some octopus individuals can learn to reverse in a visual task demonstrating behavioral flexibility even with a refined methodology.


Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2011

Contrast sensitivity in a harbor seal (Phoca vitulina)

Frederike D. Hanke; Christine Scholtyssek; Wolf Hanke; Guido Dehnhardt


Journal of Thermal Biology | 2012

Control and amount of heat dissipation through thermal windows in harbor seals (Phoca vitulina)

Nicola Erdsack; Frederike D. Hanke; Guido Dehnhardt; Wolf Hanke

Collaboration


Dive into the Frederike D. Hanke's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge