Wolf Hanke
University of Rostock
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Wolf Hanke.
The Journal of Experimental Biology | 2010
Wolf Hanke; Matthias Witte; Lars Miersch; Martin Brede; Johannes Oeffner; Mark Michael; Frederike D. Hanke; Alfred Leder; Guido Dehnhardt
SUMMARY Harbor seals (Phoca vitulina) often live in dark and turbid waters, where their mystacial vibrissae, or whiskers, play an important role in orientation. Besides detecting and discriminating objects by direct touch, harbor seals use their whiskers to analyze water movements, for example those generated by prey fish or by conspecifics. Even the weak water movements left behind by objects that have passed by earlier can be sensed and followed accurately (hydrodynamic trail following). While scanning the water for these hydrodynamic signals at a swimming speed in the order of meters per second, the seal keeps its long and flexible whiskers in an abducted position, largely perpendicular to the swimming direction. Remarkably, the whiskers of harbor seals possess a specialized undulated surface structure, the function of which was, up to now, unknown. Here, we show that this structure effectively changes the vortex street behind the whiskers and reduces the vibrations that would otherwise be induced by the shedding of vortices from the whiskers (vortex-induced vibrations). Using force measurements, flow measurements and numerical simulations, we find that the dynamic forces on harbor seal whiskers are, by at least an order of magnitude, lower than those on sea lion (Zalophus californianus) whiskers, which do not share the undulated structure. The results are discussed in the light of pinniped sensory biology and potential biomimetic applications.
Proceedings of the Royal Society of London B: Biological Sciences | 2012
Nicole U. Czech-Damal; Alexander Liebschner; Lars Miersch; Gertrud Klauer; Frederike D. Hanke; Christopher D. Marshall; Guido Dehnhardt; Wolf Hanke
Passive electroreception is a widespread sense in fishes and amphibians, but in mammals this sensory ability has previously only been shown in monotremes. While the electroreceptors in fish and amphibians evolved from mechanosensory lateral line organs, those of monotremes are based on cutaneous glands innervated by trigeminal nerves. Electroreceptors evolved from other structures or in other taxa were unknown to date. Here we show that the hairless vibrissal crypts on the rostrum of the Guiana dolphin (Sotalia guianensis), structures originally associated with the mammalian whiskers, serve as electroreceptors. Histological investigations revealed that the vibrissal crypts possess a well-innervated ampullary structure reminiscent of ampullary electroreceptors in other species. Psychophysical experiments with a male Guiana dolphin determined a sensory detection threshold for weak electric fields of 4.6 µV cm−1, which is comparable to the sensitivity of electroreceptors in platypuses. Our results show that electroreceptors can evolve from a mechanosensory organ that nearly all mammals possess and suggest the discovery of this kind of electroreception in more species, especially those with an aquatic or semi-aquatic lifestyle.
The Journal of Experimental Biology | 2007
N. Schulte-Pelkum; Sven Wieskotten; Wolf Hanke; Guido Dehnhardt; Björn Mauck
SUMMARY For seals hunting in dark and murky waters one source of sensory information for locating prey consists of fish-generated water movements, which they can detect using their highly sensitive mystacial vibrissae. As water movements in the wake of fishes can persist for several minutes, hydrodynamic trails of considerable length are generated. It has been demonstrated that seals can use their vibrissae to detect and track hydrodynamic trails generated artificially by miniature submarines. In the present study, we trained a harbour seal to swim predefined courses, thus generating biogenic hydrodynamic trails. The structure of these trails was measured using Particle Image Velocimetry. A second seal was trained to search for and track the trail after the trail-generating seal had left the water. Our trail-following seal was able to detect and accurately track the hydrodynamic trail, showing search patterns either mostly congruent with the trail or crossing the trail repeatedly in an undulatory way. The undulatory trail-following search pattern might allow a seal to relocate a lost trail or successfully track a fleeing, zigzagging prey fish.
The Journal of Experimental Biology | 2010
Sven Wieskotten; Guido Dehnhardt; Björn Mauck; Lars Miersch; Wolf Hanke
SUMMARY Harbour seals can use their vibrissal system to detect and follow hydrodynamic trails left by moving objects. In this study we determined the maximum time after which a harbour seal could indicate the moving direction of an artificial fish tail and analysed the hydrodynamic parameters allowing the discrimination. Hydrodynamic trails were generated using a fin-like paddle moving from left to right or from right to left in the calm water of an experimental box. The blindfolded seal was able to recognise the direction of the paddle movement when the hydrodynamic trail was up to 35 s old. Particle Image Velocimetry (PIV) revealed that the seal might have perceived and used two different hydrodynamic parameters to determine the moving direction of the fin-like paddle. The structure and spatial arrangement of the vortices in the hydrodynamic trail and high water velocities between two counter-rotating vortices are characteristic of the movement direction and are within the sensory range of the seal.
Philosophical Transactions of the Royal Society B | 2011
Lars Miersch; Wolf Hanke; Sven Wieskotten; Frederike D. Hanke; Johannes Oeffner; Alfred Leder; Martin Brede; Matthias Witte; Guido Dehnhardt
Beside their haptic function, vibrissae of harbour seals (Phocidae) and California sea lions (Otariidae) both represent highly sensitive hydrodynamic receptor systems, although their vibrissal hair shafts differ considerably in structure. To quantify the sensory performance of both hair types, isolated single whiskers were used to measure vortex shedding frequencies produced in the wake of a cylinder immersed in a rotational flow tank. These measurements revealed that both whisker types were able to detect the vortex shedding frequency but differed considerably with respect to the signal-to-noise ratio (SNR). While the signal detected by sea lion whiskers was substantially corrupted by noise, harbour seal whiskers showed a higher SNR with largely reduced noise. However, further analysis revealed that in sea lion whiskers, each noise signal contained a dominant frequency suggested to function as a characteristic carrier signal. While in harbour seal whiskers the unique surface structure explains its high sensitivity, this more or less steady fundamental frequency might represent the mechanism underlying hydrodynamic reception in the fast swimming sea lion by being modulated in response to hydrodynamic stimuli impinging on the hair.
The Journal of Experimental Biology | 2011
Sven Wieskotten; Björn Mauck; Lars Miersch; Guido Dehnhardt; Wolf Hanke
SUMMARY Harbour seals can use their mystacial vibrissae to detect and track hydrodynamic wakes. We investigated the ability of a harbour seal to discriminate objects of different size or shape by their hydrodynamic signature and used particle image velocimetry to identify the hydrodynamic parameters that a seal may be using to do so. Hydrodynamic trails were generated by different sized or shaped paddles that were moved in the calm water of an experimental box to produce a characteristic signal. In a two-alternative forced-choice procedure the blindfolded subject was able to discriminate size differences of down to 3.6 cm (Weber fraction 0.6) when paddles were moved at the same speed. Furthermore the subject distinguished hydrodynamic signals generated by flat, cylindrical, triangular or undulated paddles of the same width. Particle image velocimetry measurements demonstrated that the seal could have used the highest velocities and the steepness of the gradients within the wake to discriminate object size, beside the size of counter-rotating vortices and the spatial extension of a wake. For shape discrimination the subject could have used the spatial extension of the whole wake, in addition to the arrangement of the vortices. We tested whether the seal used highest velocities, the steepness of the gradients and the spatial extension of the wake in a second set of experiments by varying moving speed and paddle size, respectively. The subject was still able to discriminate between the respective object sizes, but the minimum detectable size difference increased to 4.4 cm (Weber fraction 3.6). For the shape discrimination task, the seal was only able to distinguish flat from triangular paddles. Our results indicate that the seals discrimination abilities depend on more than one hydrodynamic parameter.
Journal of Comparative Physiology A-neuroethology Sensory Neural and Behavioral Physiology | 2011
Nele Gläser; Sven Wieskotten; Christian Otter; Guido Dehnhardt; Wolf Hanke
The mystacial vibrissae of pinnipeds constitute a sensory system for active touch and detection of hydrodynamic events. Harbour seals (Phoca vitulina) and California sea lions (Zalophus californianus) can both detect hydrodynamic stimuli caused by a small sphere vibrating in the water (hydrodynamic dipole stimuli). Hydrodynamic trail following has only been shown in harbour seals. Hydrodynamical and biomechanical studies of single vibrissae of the two species showed that the specialized undulated structure of harbour seal vibrissae, as opposed to the smooth structure of sea lion vibrissae, suppresses self-generated noise in the actively moving animal. Here we tested whether also sea lions were able to perform hydrodynamic trail following in spite of their non-specialized hair structure. Hydrodynamic trails were generated by a remote-controlled miniature submarine. Linear trails could be followed with high accuracy, comparable to the performance of harbour seals, but in contrast, increasing delay resulted in a reduced performance as compared to harbour seals. The results of this study are consistent with the hypothesis that structural differences in the vibrissal hair types of otariid compared to phocid pinnipeds lead to different sensitivity of the vibrissae during forward swimming, but still reveal a good performance even in the species with non-specialized hair type.
Experimental Brain Research | 2009
Frederike D. Hanke; Wolf Hanke; Christine Scholtyssek; Guido Dehnhardt
Pinnipeds are amphibious mammals. The amphibious lifestyle is challenging for all sensory systems including vision, and specific adaptations of the eyes have evolved in response to the changed requirements concerning vision in two optically very different media, water and air. The present review summarizes the information available on pinniped eyes with an emphasis on harbour seal vision for which most information is available to date. Recent studies in this species have improved the understanding of amphibious vision by reanalysing refraction, by studying corneal topography, and by measuring visual acuity as a function of ambient luminance. The harbour seal eye can be characterized as an eye that balances high resolution, supported by data on ganglion cell density and topography, and sensitivity. Furthermore, it was shown that seals have multifocal lenses, broad visual fields, and distinct eye movement abilities. The mechanisms described here form the basis for future research on visually guided behaviour.
The Journal of Experimental Biology | 2003
Dennis T.T. Plachta; Wolf Hanke; Horst Bleckmann
SUMMARY Sensory systems often consist of several parallel pathways. Within each pathway, sensory information may be processed in topographically arranged maps or in maps derived by neuronal computation. Parallel pathways have so far not been described in the central lateral line system of teleost fish at levels higher than the medulla, and evidence for midbrain lateral line maps in fish is still weak. We found two classes of units with different response patterns in the central lateral line nucleus in the torus semicircularis of the goldfish Carassius auratus. Units of one class responded to a passing sphere and to the wake caused by that sphere with excitation. Units of the second class also responded to the moving sphere. However, these units did not respond to the wake behind the sphere. Hydrodynamic information received by class two units was topographically organized in the torus semicircularis of goldfish in that anterior body areas projected to rostral midbrain and posterior body areas to caudal midbrain. Units that responded only to the passing sphere were on average located more ventrally in the lateral TS than the units that responded exclusively to a vibrating sphere.
The Journal of Experimental Biology | 2010
Sven Wieskotten; Guido Dehnhardt; Björn Mauck; Lars Miersch; Wolf Hanke
SUMMARY The mystacial vibrissae of harbour seals (Phoca vitulina) constitute a highly sensitive hydrodynamic receptor system enabling the seals to detect and follow hydrodynamic trails. In the wild, hydrodynamic trails, as generated by swimming fish, consist of cyclic burst-and-glide phases, associated with various differences in the physical parameters of the trail. Here, we investigated the impact of glide phases on the trackability of differently aged hydrodynamic trails in a harbour seal. As fish are not easily trained to swim certain paths with predetermined burst-and-glide phases, the respective hydrodynamic trails were generated using a remote-controlled miniature submarine. Gliding phases in hydrodynamic trails had a negative impact on the trackability when trails were 15 s old. The seal lost the generated trails more often within the transition zones, when the submarine switched from a burst to a glide moving pattern. Hydrodynamic parameter analysis (particle image velocimetry) revealed that the smaller dimensions and faster decay of hydrodynamic trails generated by the gliding submarine are responsible for the impaired success of the seal tracking the gliding phase. Furthermore, the change of gross water flow generated by the submarine from a rearwards-directed stream in the burst phase to a water flow passively dragged behind the submarine during gliding might influence the ability of the seal to follow the trail as this might cause a weaker deflection of the vibrissae. The possible ecological implications of intermittent swimming behaviour in fish for piscivorous predators are discussed.