Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fredine T. Lauer is active.

Publication


Featured researches published by Fredine T. Lauer.


Nature Nanotechnology | 2009

Mechanisms for how inhaled multiwalled carbon nanotubes suppress systemic immune function in mice

L. A. Mitchell; Fredine T. Lauer; Scott W. Burchiel; Jacob D. McDonald

The potential health effects of inhaling carbon nanotubes are important because of possible exposures in occupational settings. Previously, we have shown mice that have inhaled multiwalled carbon nanotubes have suppressed systemic immune function. Here, we show the mechanisms for this immune suppression. Mice were exposed to 0, 0.3 or 1 mg m(-3) multiwalled carbon nanotubes for 6 h per day for 14 consecutive days in whole-body inhalation chambers. Only those exposed to a dose of 1 mg m(-3) presented suppressed immune function; this involved activation of cyclooxygenase enzymes in the spleen in response to a signal from the lungs. Spleen cells from exposed animals partially recovered their immune function when treated with ibuprofen, a drug that blocks the formation of cyclooxygenase enzymes. Knockout mice without cyclooxygenase enzymes were not affected when exposed to multiwalled carbon nanotubes, further confirming the importance of this enzyme in suppression. Proteins from the lungs of exposed mice suppressed the immune function of spleen cells from normal mice, but not those from knockout mice. Our findings suggest that signals from the lung can activate signals in the spleen to suppress the immune function of exposed mice.


Molecular Carcinogenesis | 1999

Factors influencing elevation of intracellular Ca2+ in the MCF-10A human mammary epithelial cell line by carcinogenic polycyclic aromatic hydrocarbons

Stacey L. Tannheimer; Fredine T. Lauer; Jennifer Lane; Scott W. Burchiel

Carcinogenic polycyclic aromatic hydrocarbons and a halogenated aromatic hydrocarbon, 2,3,7,8‐tetrachlorodibenzo‐p‐dioxin (TCDD), were evaluated for their effects on intracellular Ca2+ in the human mammary epithelial cell line MCF‐10A. After two 18‐h incubations with MCF‐10A cells, benzo[a]pyrene (BaP; 1, 3, and 10 μM) produced a dose‐dependent increase in intracellular Ca2+. 7,12‐Dimethylbenz[a]anthracene increased Ca2+ at 10 μM, whereas 3‐methycholanthrene and TCDD did not. The Ca2+‐elevating effect of BaP appeared to be dependent on the influx of extracellular Ca2+, as addition of the Ca2+ chelator EGTA to the extracellular medium prevented the increase in Ca2+. MCF‐10A cells were found by polymerase chain reaction to express cytochrome P4501A and P4501B isozymes as well as the aryl hydrocarbon receptor and aryl hydrocarbon receptor nuclear translocator mRNAs associated with cytochrome P450 induction. Certain cytochrome P450–derived metabolites, including benzo[a]pyrene‐7,8‐diol (BP‐diol) and benzo[a]pyrene‐7,8‐diol‐9,10‐epoxide (BPDE), were more effective in increasing Ca2+ than was BaP. The Ca2+‐elevating effect of BP‐diol was prevented by α‐naphthoflavone, a cytochrome P4501A and P4501B inhibitor, but not by the antioxidant N‐acetylcysteine. These results suggest that cytochrome P450–dependent formation of BPDE from BP‐diol is a major mechanism required for elevation of Ca2+ in MCF‐10A cells. Mol. Carcinog. 25:48–54, 1999.


Journal of Toxicology and Environmental Health | 2003

Benzo[a]Pyrene Diones are Produced by Photochemical and Enzymatic Oxidation and Induce Concentration-Dependent Decreases in the Proliferative State of Human Pulmonary Epithelial Cells

Matthew D. Reed; Michael L. Monske; Fredine T. Lauer; Stephen P. Meserole; Jerry L. Born; Scott W. Burchiel

Organic components within mixtures of combustion-derived materials may play an important role in the correlation between air pollution and adverse cardio/respiratory health. One class of these organic components, polycyclic aromatic hydrocarbons (PAHs), has been shown to produce a wide variety of adverse health effects. An air toxic and a model PAH, benzo[a]pyrene (BaP), is a component of combustion-derived particulate matter (PM). Although most biological effects associated with BaP have been attributed to the cytochrome P-450 derived BaP 7,8-diol 9,10-epoxide, many other BaP oxidation products are formed in atmospheric and biological reactions and may contribute to PAH-induced adverse health effects. In an ambient environ-ment, BaP and other PAHs undergo oxidation in the presence of ultraviolet light, O 2 , O 3 , NO 2 , or OH ” . Biological peroxidase- and P-450 mediated conversion of BaP produces an extensive metabolic profile of BaP oxidation products that significantly outnumber the 7,8-diol/diol epoxide. The data herein show that in addition to near-ultraviolet light and P-450 isozymes, lactoperoxidase (airway peroxidase) converted BaP into a mixture of three diones, the 1,6-, 3,6-, and 6,12-BaP dione (BPD). In addition, it was found that low concentrations of BPDs induced a concentration-dependent decrease in the proliferation state of human pulmonary epithelial cells in vitro. Nanomolar concentrations of BPDs mediated cell growth inhibition, which was partially reversed by co-incubation with N-acetyl-L-cysteine and ascorbate. BPDs induced the formation of reactive oxygen species as measured by the fluorophore 2,7-dichloro-fluorescein. Together, these results may indicate a role for PAH oxidation products (PAH diones) in the adverse health effects associated with combustion-derived PM and semivolatile organic compounds.


Clinical Immunology | 2003

Environmental polycyclic aromatic hydrocarbons, benzo(a) pyrene (BaP) and BaP-quinones, enhance IgE-mediated histamine release and IL-4 production in human basophils

Christopher L Kepley; Fredine T. Lauer; Janet M. Oliver; Scott W. Burchiel

Polycyclic aromatic hydrocarbons (PAHs) are major components of diesel exhaust particles found in pollutant respirable particles. There is growing evidence that these fossil fuel combustion products exacerbate allergic inflammation. Basophils contribute to allergic inflammation through the release of preformed and granule-derived mediators. To determine whether allergens and PAHs interact, we incubated human basophils with PAHs and measured the release of histamine and IL-4 with and without added antigen. None of the PAHs induced mediator release by itself and none affected total cellular histamine levels. However, several PAHs enhanced histamine release and IL-4 production in response to crosslinking the high-affinity IgE receptor, Fc epsilon RI. The enhancement seen with 1,6-BaP-quinone involved an increase in tyrosine phosphorylation in several different substrates, including the Fc epsilon RI-associated tyrosine kinase, Lyn, and elevated reactive oxygen species (ROS) levels detected by dichlorofluorescein fluorescence and flow cytometry. The PAH-induced enhancement of mediator release and ROS production could be inhibited with the antioxidant N-acetylcysteine. These data provide further evidence that environmental pollutants can influence allergic inflammation through enhanced Fc epsilon RI-coupled mediator release from human basophils.


Toxicology and Applied Pharmacology | 2009

Temporal-spatial analysis of U.S.-Mexico border environmental fine and coarse PM air sample extract activity in human bronchial epithelial cells.

Fredine T. Lauer; Leah A. Mitchell; Edward J. Bedrick; Jacob D. McDonald; Wen Yee Lee; Wen Whai Li; Hector A. Olvera; Maria A. Amaya; Marianne Berwick; Melissa Gonzales; Robert Currey; Nicholas E. Pingitore; Scott W. Burchiel

Particulate matter less than 10 microm (PM10) has been shown to be associated with aggravation of asthma and respiratory and cardiopulmonary morbidity. There is also great interest in the potential health effects of PM2.5. Particulate matter (PM) varies in composition both spatially and temporally depending on the source, location and seasonal condition. El Paso County which lies in the Paso del Norte airshed is a unique location to study ambient air pollution due to three major points: the geological land formation, the relatively large population and the various sources of PM. In this study, dichotomous filters were collected from various sites in El Paso County every 7 days for a period of 1 year. The sampling sites were both distant and near border crossings, which are near heavily populated areas with high traffic volume. Fine (PM2.5) and Coarse (PM10-2.5) PM filter samples were extracted using dichloromethane and were assessed for biologic activity and polycyclic aromatic (PAH) content. Three sets of marker genes human BEAS2B bronchial epithelial cells were utilized to assess the effects of airborne PAHs on biologic activities associated with specific biological pathways associated with airway diseases. These pathways included in inflammatory cytokine production (IL-6, IL-8), oxidative stress (HMOX-1, NQO-1, ALDH3A1, AKR1C1), and aryl hydrocarbon receptor (AhR)-dependent signaling (CYP1A1). Results demonstrated interesting temporal and spatial patterns of gene induction for all pathways, particularly those associated with oxidative stress, and significant differences in the PAHs detected in the PM10-2.5 and PM2.5 fractions. Temporally, the greatest effects on gene induction were observed in winter months, which appeared to correlate with inversions that are common in the air basin. Spatially, the greatest gene expression increases were seen in extracts collected from the central most areas of El Paso which are also closest to highways and border crossings.


Toxicology and Applied Pharmacology | 2010

Low-dose synergistic immunosuppression of T-dependent antibody responses by polycyclic aromatic hydrocarbons and arsenic in C57BL/6J murine spleen cells

Qian Li; Fredine T. Lauer; Ke Jian Liu; Laurie G. Hudson; Scott W. Burchiel

Polycyclic aromatic hydrocarbons (PAHs) and arsenic are both environmental agents that are known to have significant immunotoxicity. Previous studies have shown that PAH exposure of spleen cells in vitro produces significant immune suppression of humoral immunity, especially when P450 activation products are examined. Exposure to arsenic, particularly sodium arsenite, has also been found to be suppressive to antibody responses in vitro and in vivo. The purpose of the present studies was to examine the immunotoxicity of PAHs and arsenite following coexposures with the theory being that the agents may exert synergistic actions, which might be based on their different mechanisms of action. Spleen cells were isolated from male C57BL/6J wild-type mice and treated with PAHs and/or arsenic (arsenite or arsenate). Immunotoxicity assays were used to assess the T-dependent antibody response (TDAR) to sheep red blood cells (SRBCs), measured by a direct plaque-forming cell (PFC) assay. Cell viability was measured by trypan blue staining. Spleen cell viability was not altered following 4 days of PAH and/or arsenic treatment. However, the TDAR demonstrated suppression by both PAHs and arsenic in a concentration-dependent manner. p53 was also induced by NaAsO(2) (As(3)(+)) and PAHs alone or in combination. The PAHs and their metabolites investigated included benzo[a]pyrene (BaP), BaP-7,8-diol, BaP-7,8-diol-9,10-epoxide (BPDE), 7,12-dimethylbenz[a]anthracene (DMBA), DMBA-3,4-diol, dibenzo[a,l]pyrene (DB[a,l]P). PAH metabolites were found to be more potent than parent compounds in producing immunosuppression and inducing p53 expression. Interestingly, DB[a,l]P, a potent carcinogenic PAH not previously characterized for immunotoxicity, was also found to be strongly immunosuppressive. Arsenite (NaAsO(2), As(3)(+)) was found to produce immunosuppression at concentrations as low as 0.5 microM and was immunosuppressive at a 10-fold lower concentration than sodium arsenate (Na(2)HAsO(4), As(5)(+)). Coexposure of spleen cell cultures to PAHs and As(3)(+), both at individual low-effect concentrations, was found to produce profound suppression of the TDAR demonstrating synergy between these two chemical classes of agents.


Toxicology and Applied Pharmacology | 2009

Immunotoxicity and biodistribution analysis of arsenic trioxide in C57Bl/6 mice following a 2-week inhalation exposure.

Scott W. Burchiel; Leah A. Mitchell; Fredine T. Lauer; Xi Sun; Jacob D. McDonald; Laurie G. Hudson; Ke Jian Liu

In these studies the immunotoxicity of arsenic trioxide (ATO, As(2)O(3)) was evaluated in mice following 14 days of inhalation exposures (nose only, 3 h per day) at concentrations of 50 microg/m(3) and 1 mg/m(3). A biodistribution analysis performed immediately after inhalation exposures revealed highest levels of arsenic in the kidneys, bladder, liver, and lung. Spleen cell levels were comparable to those found in the blood, with the highest concentration of arsenic detected in the spleen being 150 microg/g tissue following the 1 mg/m(3) exposures. No spleen cell cytotoxicity was observed at either of the two exposure levels. There were no changes in spleen cell surface marker expression for B cells, T cells, macrophages, and natural killer (NK) cells. There were also no changes detected in the B cell (LPS-stimulated) and T cell (Con A-stimulated) proliferative responses of spleen cells, and no changes were found in the NK-mediated lysis of Yac-1 target cells. The primary T-dependent antibody response was, however, found to be highly susceptible to ATO suppression. Both the 50 microg/m(3) and 1 mg/m(3) exposures produced greater than 70% suppression of the humoral immune response to sheep red blood cells. Thus, the primary finding of this study is that the T-dependent humoral immune response is extremely sensitive to suppression by ATO and assessment of humoral immune responses should be considered in evaluating the health effects of arsenic containing agents.


PLOS ONE | 2014

Arsenite Selectively Inhibits Mouse Bone Marrow Lymphoid Progenitor Cell Development In Vivo and In Vitro and Suppresses Humoral Immunity In Vivo

Peace C. Ezeh; Fredine T. Lauer; Debra A. MacKenzie; Shea McClain; Ke Jian Liu; Laurie G. Hudson; A. Jay Gandolfi; Scott W. Burchiel

It is known that exposure to As+3 via drinking water causes a disruption of the immune system and significantly compromises the immune response to infection. The purpose of these studies was to assess the effects of As+3 on bone marrow progenitor cell colony formation and the humoral immune response to a T-dependent antigen response (TDAR) in vivo. In a 30 day drinking water study, mice were exposed to 19, 75, or 300 ppb As+3. There was a decrease in bone marrow cell recovery, but not spleen cell recovery at 300 ppb As+3. In the bone marrow, As+3 altered neither the expression of CD34+ and CD38+ cells, markers of early hematopoietic stem cells, nor CD45−/CD105+, markers of mesenchymal stem cells. Spleen cell surface marker CD45 expression on B cells (CD19+), T cells (CD3+), T helper cells (CD4+) and cytotoxic T cells (CD8+), natural killer (NK+), and macrophages (Mac 1+) were not altered by the 30 day in vivo As+3 exposure. Functional assays of CFU-B colony formation showed significant selective suppression (p<0.05) by 300 ppb As+3 exposure, whereas CFU-GM formation was not altered. The TDAR of the spleen cells was significantly suppressed at 75 and 300 ppb As+3. In vitro studies of the bone marrow revealed a selective suppression of CFU-B by 50 nM As+3 in the absence of apparent cytotoxicity. Monomethylarsonous acid (MMA+3) demonstrated a dose-dependent and selective suppression of CFU-B beginning at 5 nM (p<0.05). MMA+3 suppressed CFU-GM formation at 500 nM, a concentration that proved to be nonspecifically cytotoxic. As+5 did not suppress CFU-B and/or CFU-GM in vitro at concentrations up to 500 nM. Collectively, these results demonstrate that As+3 and likely its metabolite (MMA+3) target lymphoid progenitor cells in mouse bone marrow and mature B and T cell activity in the spleen.


Molecular Pharmacology | 2007

p53 and ATM/ATR Regulate 7,12-Dimethylbenz[a]anthracene-Induced Immunosuppression

Jun Gao; Leah A. Mitchell; Fredine T. Lauer; Scott W. Burchiel

The tumor suppressor protein p53 is a transcription factor that regulates apoptotic responses produced by genotoxic agents. Previous studies have reported that 7,12-dimethylbenz[a]anthracene (DMBA)-induced bone marrow toxicity is p53-dependent in vivo. Our laboratory has shown that DMBA-induced splenic immunosuppression is CYP1B1- and microsomal epoxide hydrolase (mEH)-dependent, demonstrating that the DMBA-3,4-dihydrodiol-1,2-epoxide metabolite (DMBA-DE) is probably responsible for DMBA-induced immunosuppression. DMBA-DE is known to bind to DNA leading to strand breaks. Therefore, we postulated that a p53 pathway is required for DBMA-induced immunosuppression. In the present studies, our data show that activated p53 accumulated in the nuclei of spleen cells in WT and AhR-null mice after DMBA treatment, but not in CYP1B1-null or mEH-null mice. These results suggest that DMBA activates p53 in a CYP1B1- and mEH-dependent manner in vivo but is not AhR-dependent. Ataxia telangiectasia mutated (ATM) and ATM and Rad3-related protein (ATR) are sensors for DNA damage that signal p53 activation. Increased ATM, phospho-ATM (Ser1987), and ATR levels were observed after DMBA treatment in WT, p53-null, and AhR-null mice but not in CYP1B1-null or mEH-null mice. Therefore, ATM and ATR seem to act upstream of p53 as sensors of DNA damage. Ex vivo immune function studies demonstrated that DMBA-induced splenic immunosuppression is p53-dependent at doses of DMBA that produce immunosuppression in the absence of cytotoxicity. High-dose DMBA cytotoxicity may be associated with p53-independent pathways. This study provides new insights into the requirement of genotoxicity for DMBA-induced immunosuppression in vivo and highlights the roles of ATM/ATR in signaling p53.


PLOS ONE | 2014

Differential Susceptibility of Human Peripheral Blood T Cells to Suppression by Environmental Levels of Sodium Arsenite and Monomethylarsonous Acid

Scott W. Burchiel; Fredine T. Lauer; Ellen J. Beswick; A. Jay Gandolfi; Faruque Parvez; Ke Jian Liu; Laurie G. Hudson

Human exposure to arsenic in drinking water is known to contribute to many different health outcomes such as cancer, diabetes, and cardiopulmonary disease. Several epidemiological studies suggest that T cell function is also altered by drinking water arsenic exposure. However, it is unclear how individual responses differ to various levels of exposure to arsenic. Our laboratory has recently identified differential responses of human peripheral blood mononuclear cell (HPMBC) T cells as measured by polyclonal T cell activation by mitogens during sodium arsenite exposure. T cells from certain healthy individuals exposed to various concentrations (1–100 nM) of arsenite in vitro showed a dose-dependent suppression at these extremely low concentrations (∼0.1–10 ppb) of arsenite, whereas other individuals were not suppressed at low concentrations. In a series of more than 30 normal donors, two individuals were found to be sensitive to low concentration (10 nM equivalent ∼1 ppb drinking water exposure) to sodium arsenite-induced inhibition of T cell proliferation produced by phytohemagglutinin (PHA) and anti-CD3/anti-CD28. In an arsenite-susceptible individual, arsenite suppressed the activation of Th1 (Tbet) cells, and decreased the percentage of cells in the double positive Th17 (RORγt) and Treg (FoxP3) population. While the majority of normal blood donors tested were not susceptible to inhibition of proliferation at the 1–100 nM concentrations of As+3, it was found that all donors were sensitive to suppression by 100 nM monomethylarsonous acid (MMA+3), a key metabolite of arsenite. Thus, our studies demonstrate for the first time that low ppb-equivalent concentrations of As+3 are immunosuppressive to HPBMC T cells in some individuals, but that most donor HPBMC are sensitive to suppression by MMA+3 at environmentally relevant exposure levels.

Collaboration


Dive into the Fredine T. Lauer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ke Jian Liu

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Huan Xu

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Jacob D. McDonald

Lovelace Respiratory Research Institute

View shared research outputs
Top Co-Authors

Avatar

Jun Gao

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John W. Davis

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge