Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Laurie G. Hudson is active.

Publication


Featured researches published by Laurie G. Hudson.


Journal of Cellular Physiology | 2005

Developmental transcription factor Slug is required for effective re-epithelialization by adult keratinocytes

Pierre Savagner; Donna F. Kusewitt; Ethan A. Carver; Fabrice Magnino; Chagsun Choi; Thomas Gridley; Laurie G. Hudson

During re‐epithelialization of cutaneous wounds, keratinocytes recapitulate several aspects of the embryonic process of epithelial‐mesenchymal transition (EMT), including migratory activity and reduced intercellular adhesion. The transcription factor Slug modulates EMT in the embryo and controls desmosome number in adult epithelial cells, therefore, we investigated Slug expression and function during cutaneous wound re‐epithelialization. Slug expression was elevated in keratinocytes bordering cutaneous wounds in mice in vivo, in keratinocytes migrating from mouse skin explants ex vivo, and in human keratinocytes at wound margins in vitro. Expression of the related transcription factor Snail was not significantly modulated in keratinocytes during re‐epithelialization in vitro. Epithelial cell outgrowth from skin explants of Slug knockout mice was severely compromised, indicating a critical role for Slug in epithelial keratinocyte migration. Overexpression of Slug in cultured human keratinocytes caused increased cell spreading and desmosomal disruption, both of which were most pronounced at wound margins. Furthermore, in vitro wound healing was markedly accelerated in keratinocytes that ectopically expressed Slug. Taken together, these findings suggest that Slug plays an important role during wound re‐epithelialization in adult skin and indicate that Slug controls some aspects of epithleial cell behavior in adult tissues as well as during embryonic development.


Cancer Research | 2007

Engagement of Collagen-Binding Integrins Promotes Matrix Metalloproteinase-9–Dependent E-Cadherin Ectodomain Shedding in Ovarian Carcinoma Cells

Jaime Symowicz; Brian P. Adley; Kara J. Gleason; Jeffrey J. Johnson; Supurna Ghosh; David A. Fishman; Laurie G. Hudson; M. Sharon Stack

Reversible modulation of cell-cell adhesion, cell-matrix adhesion, and proteolytic activity plays a critical role in remodeling of the neoplastic ovarian epithelium during metastasis, implicating cadherins, integrins, and proteinases in i.p. metastatic dissemination of epithelial ovarian carcinoma (EOC). Aberrant epithelial differentiation is an early event in ovarian carcinogenesis; thus, in contrast to most carcinomas that lose E-cadherin expression with progression, E-cadherin is abundant in primary EOC. Metastasizing EOCs engage in integrin-mediated adhesion to submesothelial interstitial collagens and express matrix metalloproteinases (MMP) that facilitate collagen invasion, thereby anchoring secondary lesions in the submesothelial matrix. As metalloproteinases have also been implicated in E-cadherin ectodomain shedding, the current study was undertaken to model the effects of matrix-induced integrin clustering on proteinase-catalyzed E-cadherin ectodomain shedding. Aggregation of collagen-binding integrins induced shedding of an 80-kDa E-cadherin ectodomain [soluble E-cadherin (sE-cad)] in a MMP- and Src kinase-dependent manner, and sE-cad was prevalent in ascites from ovarian cancer patients. Expression of MMP-9 was elevated by integrin aggregation, integrin-mediated ectodomain shedding was inhibited by a MMP-9 function blocking antibody, and incubation of cells with exogenous MMP-9 catalyzed E-cadherin ectodomain shedding. In contrast to other tumors wherein sE-cad is released into the circulation, EOC tumors maintain direct contact with sE-cad-rich ascites at high concentration, and incubation of EOC cells with physiologically relevant concentrations of recombinant sE-cad disrupted adherens junctions. These data support a novel mechanism for posttranslational modification of E-cadherin function via MMP-9 induction initiated by cell-matrix contact and suggest a mechanism for promotion of EOC metastatic dissemination.


Clinical & Experimental Metastasis | 2008

Phenotypic plasticity of neoplastic ovarian epithelium: unique cadherin profiles in tumor progression

Laurie G. Hudson; Reema Zeineldin; M. Sharon Stack

The mesodermally derived normal ovarian surface epithelium (OSE) displays both epithelial and mesenchymal characteristics and exhibits remarkable phenotypic plasticity during post-ovulatory repair. The majority of epithelial ovarian carcinomas (EOC) are derived from the OSE and represent the most lethal of all gynecological malignancies, as most patients (∼70%) present at diagnosis with disseminated intra-abdominal metastasis. The predominant pattern of EOC metastasis involves pelvic dissemination rather than lymphatic or hematologic spread, distinguishing EOC from other solid tumors. Acquisition of the metastatic phenotype involves a complex series of interrelated cellular events leading to dissociation (shedding) and dispersal of malignant cells. A key event in this process is disruption of cell–cell contacts via modulation of intercellular junctional components. In contrast to most carcinomas that downregulate E-cadherin expression during tumor progression, a unique feature of primary well-differentiated ovarian cancers is a gain of epithelial features, characterized by an increase in expression of E-cadherin. Subsequent reacquisition of mesenchymal features is observed in more advanced tumors with concomitant loss of E-cadherin expression and/or function during progression to metastasis. The functional consequences of this remarkable phenotypic plasticity are not fully understood, but may play a role in modulation of cell survival in suspension (ascites), chemoresistance, and intraperitoneal anchoring of metastatic lesions.


Cancer Research | 2008

Matrix metalloproteinase 9 is a mediator of epidermal growth factor-dependent e-cadherin loss in ovarian carcinoma cells.

Karen D. Cowden Dahl; Jaime Symowicz; Yan Ning; Elisa T. Gutierrez; David A. Fishman; Brian P. Adley; M. Sharon Stack; Laurie G. Hudson

Epidermal growth factor (EGF) receptor (EGFR) is frequently elevated in epithelial ovarian cancer, and E-cadherin expression is often reduced in advanced disease. In this study, we investigated a mechanism by which EGFR activation promotes disruption of adherens junctions through induction of matrix metalloproteinase 9 (MMP-9). We show that EGFR activation down-modulates E-cadherin, and broad spectrum MMP inhibition ameliorates EGF-stimulated junctional disruption and loss of E-cadherin protein. MMP-9 involvement in EGF-dependent down-regulation of E-cadherin was determined by siRNA specifically directed against MMP-9. Furthermore, treatment with recombinant MMP-9 or transient expression of MMP-9 is sufficient to reduce E-cadherin levels in differentiated ovarian tumor cells. Stable overexpression of MMP-9 led to a loss of E-cadherin and junctional integrity, and promoted a migratory and invasive phenotype. Thus, elevated MMP-9 protein expression is sufficient for junctional disruption and loss of E-cadherin in these cells. The associations between EGFR activation, MMP-9 expression, and E-cadherin were investigated in human ovarian tumors and paired peritoneal metastases wherein immunohistochemical staining for activated (phospho) EGFR and MMP-9 colocalized with regions of reduced E-cadherin. These data suggest that regulation of MMP-9 by EGFR may represent a novel mechanism for down-modulation of E-cadherin in ovarian cancer.


Molecular and Cellular Biochemistry | 2005

Inorganic arsenic compounds cause oxidative damage to DNA and protein by inducing ROS and RNS generation in human keratinocytes.

Wei Ding; Laurie G. Hudson; Ke Jian Liu

Arsenic is a naturally occurring element that is present in food, soil, and water. Inorganic arsenic can accumulate in human skin and is associated with increased risk of skin cancer. Oxidative stress due to arsenic exposure is proposed as one potential mode of carcinogenic action. The purpose of this study is to investigate the specific reactive oxygen and nitrogen species that are responsible for the arsenic-induced oxidative damage to DNA and protein. Our results demonstrated that exposure of human keratinocytes to trivalent arsenite caused the generation of 8-hydroxyl-2′-deoxyguanine (8-OHdG) and 3-nitrotyrosine (3-NT) in a concentration- and time-dependent manner. Pentavalent arsenate had similar effects, but to a significantly less extent. The observed oxidative damage can be suppressed by pre-treating cells with specific antioxidants. Furthermore, we found that pre-treating cells with Nω-nitro-l-arginine methyl ester (l-NAME), an inhibitor of nitric oxide synthase (NOS), or with 5,10,15,20-tetrakis (N-methyl-4′-pyridyl) porphinato iron (III) chloride (FeTMPyP), a decomposition catalyst of peroxynitrite, suppressed the generation of both 8-OHdG and 3-NT, which indicated that peroxynitrite, a product of the reaction of nitric oxide and superoxide, played an important role in arsenic-induced oxidative damage to both DNA and protein. These findings highlight the involvement of peroxynitrite in the molecular mechanism underlying arsenic-induced human skin carcinogenesis.


Journal of Biological Chemistry | 2011

Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs

Xixi Zhou; Xi Sun; Karen L. Cooper; Feng Wang; Ke Jian Liu; Laurie G. Hudson

Arsenic inhibits DNA repair and enhances the genotoxicity of DNA-damaging agents such as benzo[a]pyrene and ultraviolet radiation. Arsenic interaction with DNA repair proteins containing functional zinc finger motifs is one proposed mechanism to account for these observations. Here, we report that arsenite binds to both CCHC DNA-binding zinc fingers of the DNA repair protein PARP-1 (poly(ADP-ribose) polymerase-1). Furthermore, trivalent arsenite coordinated with all three cysteine residues as demonstrated by MS/MS. MALDI-TOF-MS analysis of peptides harboring site-directed substitutions of cysteine with histidine residues within the PARP-1 zinc finger revealed that arsenite bound to peptides containing three or four cysteine residues, but not to peptides with two cysteines, demonstrating arsenite binding selectivity. This finding was not unique to PARP-1; arsenite did not bind to a peptide representing the CCHH zinc finger of the DNA repair protein aprataxin, but did bind to an aprataxin peptide mutated to a CCHC zinc finger. To investigate the impact of arsenite on PARP-1 zinc finger function, we measured the zinc content and DNA-binding capacity of PARP-1 immunoprecipitated from arsenite-exposed cells. PARP-1 zinc content and DNA binding were decreased by 76 and 80%, respectively, compared with protein isolated from untreated cells. We observed comparable decreases in zinc content for XPA (xeroderma pigmentosum group A) protein (CCCC zinc finger), but not SP-1 (specificity protein-1) or aprataxin (CCHH zinc finger). These findings demonstrate that PARP-1 is a direct molecular target of arsenite and that arsenite interacts selectively with zinc finger motifs containing three or more cysteine residues.


Cancer Research | 2005

Cyclooxygenase-2 Functions as a Downstream Mediator of Lysophosphatidic Acid to Promote Aggressive Behavior in Ovarian Carcinoma Cells

Jaime Symowicz; Brian P. Adley; Michelle Woo; Nelly Auersperg; Laurie G. Hudson; M. Sharon Stack

Elevated levels of the bioactive lipid lysophosphatidic acid (LPA) are detectable in the majority of patients with both early- and late-stage ovarian cancer, suggesting that LPA promotes early events in ovarian carcinoma dissemination. LPA contributes to the development, progression, and metastasis of ovarian cancer in part by inducing the expression of genes that contribute to proliferation, survival, or invasion, including cyclooxgenase-2 (COX-2) and matrix metalloproteinase-2 (MMP-2). We have previously shown that LPA promotes proMMP-2 activation and MMP-2-dependent migration and invasion in ovarian cancer cells. The purpose of the current study was to determine whether the effect of LPA on acquisition of the metastatic phenotype in ovarian cancer cells is mediated via a COX-2-dependent mechanism. Immunohistochemical analysis of 173 ovarian tumors showed strong COX-2 immunoreactivity in 63% of tumor specimens, including 50% of borderline tumors. LPA increased COX-2 protein expression in a time- and concentration-dependent manner in two of three immortalized borderline ovarian epithelial cells as well as in four of six ovarian cancer cell lines. This was accomplished by both activation of the Edg/LPA receptor and LPA-mediated transactivation of the epidermal growth factor receptor, which increased COX-2 expression via the Ras/mitogen-activated protein kinase pathway. COX-2 also played a role in LPA-induced invasion and migration, as treatment with the COX-2 specific inhibitor NS-398 reduced LPA-induced proMMP-2 protein expression and activation and blocked MMP-dependent motility and invasive activity. These data show that COX-2 functions as a downstream mediator of LPA to potentiate aggressive cellular behavior.


Journal of Biological Chemistry | 2009

Inhibition of Poly(ADP-ribose) Polymerase-1 by Arsenite Interferes with Repair of Oxidative DNA Damage

Wei Ding; Wenlan Liu; Karen L. Cooper; Xu-Jun Qin; Patrícia L. de Souza Bergo; Laurie G. Hudson; Ke Jian Liu

Arsenic enhances skin tumor formation when combined with other carcinogens, including UV radiation (UVR). In this study we report that low micromolar concentrations of arsenite synergistically increases UVR-induced oxidative DNA damage in human keratinocytes as detected by 8-hydroxyl-2′-deoxyguanine (8-OHdG) formation. Poly(ADP-ribose) polymerase-1 (PARP-1) is involved in base excision repair, a process that repairs 8-OHdG lesions. Arsenite suppresses UVR-induced PARP-1 activation in a concentration-dependent manner. Inhibition of PARP-1 activity by 3-aminobenzamide or small interfering RNA silencing of PARP-1 expression significantly increases UVR-induced 8-OHdG formation, suggesting that inhibition of PARP-1 activity by arsenite contributes to oxidative DNA damage. PARP-1 is a zinc finger protein, and mass spectrometry analysis reveals that arsenite can occupy a synthetic apopeptide representing the first zinc finger of PARP-1 (PARPzf). When the PARPzf peptide is preincubated with Zn(II) followed by incubation with increasing concentrations of arsenite, the ZnPARPzf signal is decreased while the AsPARPzf signal intensity is increased as a function of arsenite dose, suggesting a competition between zinc and arsenite for the same binding site. Addition of Zn(II) abolished arsenite enhancement of UVR-stimulated 8-OHdG generation and restored PARP-1 activity. Our findings demonstrate that arsenite inhibits oxidative DNA damage repair and suggest that interaction of arsenite with the PARP-1 zinc finger domain contributes to the inhibition of PARP-1 activity by arsenite. Arsenite inhibition of poly(ADP-ribosyl)ation is one likely mechanism for the reported co-carcinogenic activities of arsenic in UVR-induced skin carcinogenesis.


Microscopy Research and Technique | 1998

CONTRIBUTIONS OF THE EPIDERMAL GROWTH FACTOR RECEPTOR TO KERATINOCYTE MOTILITY

Laurie G. Hudson; Lisa J. McCawley

The epidermal growth factor (EGF) receptor plays a central role in numerous aspects of keratinocyte biology. In normal epidermis, the EGF receptor is important for autocrine growth of this renewing tissue, suppression of terminal differentiation, promotion of cell survival, and regulation of cell migration during epidermal morphogenesis and wound healing. In wounded skin, the EGF receptor is transiently up‐regulated and is an important contributor to the proliferative and migratory aspects of wound reepithelialization. In keratinocytic carcinomas, aberrant expression or activation of the EGF receptor is common and has been proposed to play a role in tumor progression. Many cellular processes such as altered cell adhesion, expression of matrix degrading proteinases, and cell migration are common to keratinocytes during wound healing and in metastatic tumors. The EGF receptor is able to regulate each of these cellular functions and we propose that transient and dynamic elevation of EGF receptor during wound healing, or constitutive overexpression in tumors, provides an important contribution to the migratory and invasive potential of keratinocytes. Microsc. Res. Tech. 43:444–455, 1998.


Journal of Biological Chemistry | 2001

Tyrosine-phosphorylated Plakoglobin Is Associated with Desmogleins but Not Desmoplakin after Epidermal Growth Factor Receptor Activation

Claire A. Gaudry; Helena L. Palka; Rachel L. Dusek; Arthur C. Huen; Melin Khandekar; Laurie G. Hudson; Kathleen J. Green

Tyrosine phosphorylation of junctional components has been proposed as a mechanism for modulating cell-cell adhesion. Although a correlation exists between the tyrosine phosphorylation of the adherens junction protein β-catenin and loss of classical cadherin-mediated adhesion, the effects of tyrosine phosphorylation on the function of the adherens junction and desmosome-associated protein plakoglobin is unknown. In the present study, we investigated the effects of epidermal growth factor receptor (EGFR) tyrosine kinase activation on the subcellular distribution of plakoglobin and its association with its junctional binding partners. Long term epidermal growth factor (EGF) treatment of A431 cells revealed a modest decrease in the cytoskeleton-associated pool of plakoglobin (Pg) and a corresponding increase in the cytosolic pool of Pg. After short term EGF treatment, plakoglobin was rapidly phosphorylated, and tyrosine-phosphorylated Pg was distributed predominantly in a membrane-associated Triton X-100-soluble pool, along with a co-precipitating high molecular weight tyrosine-phosphorylated protein identified as desmoglein 2. Analysis of deletion and point mutants defined the primary EGFR-dependent targets as one or more of three C-terminal tyrosine residues. Whereas phosphorylated Pg remained associated with the desmoglein tail after both short and long term EGFR activation, no phosphorylated Pg was found associated with the N-terminal Pg-binding domain (DPNTP) of the intermediate filament-associated protein, desmoplakin. Together these results are consistent with the possibility that EGF-dependent tyrosine phosphorylation of Pg may modulate cell-cell adhesion by compromising the link between desmosomal cadherins and the intermediate filament cytoskeleton.

Collaboration


Dive into the Laurie G. Hudson's collaboration.

Top Co-Authors

Avatar

Ke Jian Liu

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Donna F. Kusewitt

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Larry A. Sklar

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Xi Sun

University of New Mexico

View shared research outputs
Top Co-Authors

Avatar

Xixi Zhou

University of New Mexico

View shared research outputs
Researchain Logo
Decentralizing Knowledge