Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fredrick A. Jenet is active.

Publication


Featured researches published by Fredrick A. Jenet.


The Astrophysical Journal | 2006

Upper Bounds on the Low-Frequency Stochastic Gravitational Wave Background from Pulsar Timing Observations: Current Limits and Future Prospects

Fredrick A. Jenet; G. Hobbs; W. van Straten; R. N. Manchester; M. Bailes; J. P. W. Verbiest; R. T. Edwards; A. W. Hotan; John M. Sarkissian; S. M. Ord

Using a statistically rigorous analysis method, we place limits on the existence of an isotropic stochastic gravitational wave background using pulsar timing observations. We consider backgrounds whose characteristic strain spectra may be described as a power-law dependence with frequency. Such backgrounds include an astrophysical background produced by coalescing supermassive black-hole binary systems and cosmological backgrounds due to relic gravitational waves and cosmic strings. Using the best available data, we obtain an upper limit on the energy density per unit logarithmic frequency interval of Ω h2 ≤ 1.9 × 10-8 for an astrophysical background that is 5 times more stringent than the earlier limit of 1.1 × 10-7 found by Kaspi and colleagues. We also provide limits on a background due to relic gravitational waves and cosmic strings of Ω h2 ≤ 2.0 × 10-8 and Ω h2 ≤ 1.9 × 10-8, respectively. All of the quoted upper limits correspond to a 0.1% false alarm rate together with a 95% detection rate. We discuss the physical implications of these results and highlight the future possibilities of the Parkes Pulsar Timing Array project. We find that our current results can (1) constrain the merger rate of supermassive binary black hole systems at high redshift, (2) rule out some relationships between the black hole mass and the galactic halo mass, (3) constrain the rate of expansion in the inflationary era, and (4) provide an upper bound on the dimensionless tension of a cosmic string background.


The Astrophysical Journal | 2005

Detecting the stochastic gravitational wave background using pulsar timing

Fredrick A. Jenet; G. Hobbs; K. J. Lee; R. N. Manchester

The direct detection of gravitational waves is a major goal of current astrophysics. We provide details of a new method for detecting a stochastic background of gravitational waves using pulsar timing data. Our results show that regular timing observations of 40 pulsars each with a timing accuracy of 100 ns will be able to make a direct detection of the predicted stochastic background from coalescing black holes within 5 years. With an improved prewhitening algorithm, or if the background is at the upper end of the predicted range, a significant detection should be possible with only 20 pulsars.


Science | 2008

An Eccentric Binary Millisecond Pulsar in the Galactic Plane

D. J. Champion; Scott M. Ransom; P. Lazarus; F. Camilo; C. G. Bassa; Victoria M. Kaspi; David J. Nice; P. C. C. Freire; I. H. Stairs; Joeri van Leeuwen; B. W. Stappers; James M. Cordes; J. W. T. Hessels; D. R. Lorimer; Zaven Arzoumanian; Don Backer; N. D. Ramesh Bhat; Shami Chatterjee; I. Cognard; Julia S. Deneva; Claude André Faucher-Giguère; B. M. Gaensler; J. L. Han; Fredrick A. Jenet; L. Kasian; V. I. Kondratiev; M. Kramer; Joseph Lazio; M. A. McLaughlin; A. Venkataraman

Binary pulsar systems are superb probes of stellar and binary evolution and the physics of extreme environments. In a survey with the Arecibo telescope, we have found PSR J1903+0327, a radio pulsar with a rotational period of 2.15 milliseconds in a highly eccentric (e = 0.44) 95-day orbit around a solar mass (\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{M}_{{\odot}}\) \end{document}) companion. Infrared observations identify a possible main-sequence companion star. Conventional binary stellar evolution models predict neither large orbital eccentricities nor main-sequence companions around millisecond pulsars. Alternative formation scenarios involve recycling a neutron star in a globular cluster, then ejecting it into the Galactic disk, or membership in a hierarchical triple system. A relativistic analysis of timing observations of the pulsar finds its mass to be 1.74 ± 0.04 \batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{M}_{{\odot}}\) \end{document}, an unusually high value.


The Astrophysical Journal | 2009

Arecibo pulsar survey using ALFA: probing radio pulsar intermittency and transients

Julia S. Deneva; J. M. Cordes; M. A. McLaughlin; David J. Nice; D. R. Lorimer; F. Crawford; N. D. R. Bhat; F. Camilo; D. J. Champion; P. C. C. Freire; S. Edel; V. I. Kondratiev; J. W. T. Hessels; Fredrick A. Jenet; L. Kasian; V. M. Kaspi; M. Kramer; P. Lazarus; Scott M. Ransom; I. H. Stairs; B. W. Stappers; J. van Leeuwen; A. Brazier; A. Venkataraman; J. A. Zollweg; S. Bogdanov

We present radio transient search algorithms, results, and statistics from the ongoing Arecibo Pulsar ALFA (PALFA) survey of the Galactic plane. We have discovered seven objects through a search for isolated dispersed pulses. All of these objects are Galactic and have measured periods between 0.4 and 4.7 s. One of the new discoveries has a duty cycle of 0.01%, smaller than that of any other radio pulsar. We discuss the impact of selection effects on the detectability and classification of intermittent sources, and compare the efficiencies of periodicity and single-pulse (SP) searches for various pulsar classes. For some cases we find that the apparent intermittency is likely to be caused by off-axis detection or a short time window that selects only a few bright pulses and favors detection with our SP algorithm. In other cases, the intermittency appears to be intrinsic to the source. No transients were found with DMs large enough to require that they originate from sources outside our Galaxy. Accounting for the on-axis gain of the ALFA system, as well as the low gain but large solid-angle coverage of far-out sidelobes, we use the results of the survey so far to place limits on the amplitudes and event rates of transients of arbitrary origin.


arXiv: Astrophysics | 2003

Constraining the properties of the proposed supermassive black hole system in 3c66b: Limits from pulsar timing

Fredrick A. Jenet; Andrea N. Lommen; Shane L. Larson; L. Wen

General expressions for the expected timing residuals induced by gravitational wave (G-wave) emission from a slowly evolving, eccentric, binary black hole system are derived here for the first time. These expressions are used to search for the signature of G-waves emitted by the proposed supermassive binary black hole system in 3C 66B. We use data from long-term timing observations of the radio pulsar PSR B1855+09. For the case of a circular orbit, the emitted G-waves should generate clearly detectable fluctuations in the pulse-arrival times of PSR B1855+09. Since no G-waves are detected, the waveforms are used in a Monte Carlo analysis in order to place limits on the mass and eccentricity of the proposed black hole system. The analysis presented here rules out the adopted system with 95% confidence. The reported analysis also demonstrates several interesting features of a G-wave detector based on pulsar timing.General expressions for the expected timing residuals induced by gravitational wave (G-wave) emission from a slowly evolving, eccentric, binary black hole system are derived here for the first time. These expressions are used to search for the signature of G-waves emitted by the proposed supermassive binary black hole system in 3C 66B. We use data from long-term timing observations of the radio pulsar PSR B1855+09. For the case of a circular orbit, the emitted G-waves should generate clearly detectable fluctuations in the pulse-arrival times of PSR B1855+09. Since no G-waves are detected, the waveforms are used in a Monte Carlo analysis in order to place limits on the mass and eccentricity of the proposed black hole system. The analysis presented here rules out the adopted system with 95% confidence. The reported analysis also demonstrates several interesting features of a G-wave detector based on pulsar timing. Subject headings: black hole physics — gravitational waves — pulsars: general — pulsars: individual (B1855+09)


The Astrophysical Journal | 2015

Pulsar J0453+1559: A Double Neutron Star System with a Large Mass Asymmetry

J. G. Martinez; K. Stovall; P. C. C. Freire; J. S. Deneva; Fredrick A. Jenet; M. A. McLaughlin; M. Bagchi; S. D. Bates; A. Ridolfi

To understand the nature of supernovae and neutron star (NS) formation, as well as binary stellar evolution and their interactions, it is important to probe the distribution of NS masses. Until now, all double NS (DNS) systems have been measured to have a mass ratio close to unity (q


Classical and Quantum Gravity | 2013

The stochastic background: scaling laws and time to detection for pulsar timing arrays

X. Siemens; J. A. Ellis; Fredrick A. Jenet; J. D. Romano

\geq


The Astrophysical Journal | 2011

Constraining the coalescence rate of supermassive black-hole binaries using pulsar timing

Z. L. Wen; Fredrick A. Jenet; D. R. B. Yardley; G. Hobbs; R. N. Manchester

0.91). Here we report the measurement of the individual masses of the 4.07-day binary pulsar J0453+1559 from measurements of the rate of advance of periastron and Shapiro delay: The mass of the pulsar is 1.559(5)


The Astrophysical Journal | 2014

A 24 Hr Global Campaign to Assess Precision Timing of the Millisecond Pulsar J1713+0747

T. Dolch; M. T. Lam; J. M. Cordes; S. Chatterjee; C. G. Bassa; Bhaswati Bhattacharyya; D. J. Champion; I. Cognard; K. Crowter; Paul Demorest; J. W. T. Hessels; G. H. Janssen; Fredrick A. Jenet; Glenn Jones; C. A. Jordan; R. Karuppusamy; M. J. Keith; V. I. Kondratiev; M. Kramer; P. Lazarus; T. J. W. Lazio; K. J. Lee; M. A. McLaughlin; J. Roy; R. M. Shannon; I. H. Stairs; K. Stovall; J. P. W. Verbiest; D. R. Madison; Nipuni Palliyaguru

M_{\odot}


Classical and Quantum Gravity | 2010

Status update of the Parkes pulsar timing array

J. P. W. Verbiest; M. Bailes; N. D. R. Bhat; S. Burke-Spolaor; D. J. Champion; W. A. Coles; G. Hobbs; A. W. Hotan; Fredrick A. Jenet; J. Khoo; K. J. Lee; Andrea N. Lommen; R. N. Manchester; S. Oslowski; J. E. Reynolds; John M. Sarkissian; W. van Straten; D. R. B. Yardley; X. P. You

and that of its companion is 1.174(4)

Collaboration


Dive into the Fredrick A. Jenet's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

K. Stovall

National Radio Astronomy Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Scott M. Ransom

National Radio Astronomy Observatory

View shared research outputs
Researchain Logo
Decentralizing Knowledge