Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fredrik Gran is active.

Publication


Featured researches published by Fredrik Gran.


internaltional ultrasonics symposium | 2007

P2B-12 Minimum Variance Beamforming for High Frame-Rate Ultrasound Imaging

Iben Kraglund Holfort; Fredrik Gran; Jørgen Arendt Jensen

This paper investigates the application of adaptive beamforming in medical ultrasound imaging. A minimum variance (MV) approach for near-field beamforming of broadband data is proposed. The approach is implemented in the frequency domain, and it provides a set of adapted, complex apodization weights for each frequency sub-band. As opposed to the conventional, Delay and Sum (DS) beamformer, this approach is dependent on the specific data. The performance of the proposed MV beamformer is tested on simulated synthetic aperture (SA) ultrasound data, obtained using Field II. For the simulations, a 7 MHz, 128-element, phased array transducer with lambda/2-spacing was used. Data is obtained using a single element as the transmitting aperture and all 128 elements as the receiving aperture. A full SA sequence consisting of 128 emissions was simulated by sliding the active transmitting element across the array. Data for 13 point targets and a circular cyst with a radius of 5 mm were simulated. The performance of the MV beamformer is compared to DS using boxcar weights and Hanning weights, and is quantified by the Full Width at Half Maximum (FWHM) and the peak-side-lobe level (PSL). Single emission {DS Boxcar, DS Hanning, MV} provide a PSL of {-16,-36, -49} dB and a FWHM of {0.79,1.33, 0.08} mm = {3.59lambda, 6.05lambda, 0.36lambda}. Using all 128 emissions, {DS Boxcar, DS Hanning, MV} provide a PSL of {-32, -49,-65} dB, and a FWHM of {0.63, 0.97, 0.08} mm = {2.86lambda, 4.41lambda, 0.36lambda}. The contrast of the beamformed single emission responses of the circular cyst were calculated to { -18, -37, -40} dB. The simulations have shown that the frequency sub-band MV beamformer provides a significant increase in lateral resolution compared to DS, even when using considerably fewer emissions. An increase in resolution is seen when using only one single emission. Furthermore, it is seen that an increase of the number of emissions does not alter the FWHM. Thus, the MV beam- former introduces the possibility for high frame-rate imaging with increased resolution.


Ultraschall in Der Medizin | 2009

In-vivo examples of flow patterns with the fast vector velocity ultrasound method.

Kristoffer Lindskov Hansen; Jesper Udesen; Fredrik Gran; Jørn Jensen; M. Bachmann Nielsen

PURPOSEnConventional ultrasound methods for acquiring color flow images of the blood motion are limited by a relatively low frame rate and are restricted to only giving velocity estimates along the ultrasound beam direction. To circumvent these limitations, the Plane Wave Excitation (PWE) method has been proposed.nnnMATERIAL AND METHODSnThe PWE method can estimate the 2D vector velocity of the blood with a high frame rate. Vector velocity estimates are acquired by using the following approach: The ultrasound is not focused during the ultrasound transmission, and a full speckle image of the blood can be acquired for each pulse emission. The pulse is a 13 bit Barker code transmitted simultaneously from each transducer element. The 2D vector velocity of the blood is found using 2D speckle tracking between segments in consecutive speckle images. Implemented on the experimental scanner RASMUS and using a 100 CPU linux cluster for post processing, PWE can achieve a frame of 100 Hz where one vector velocity sequence of approximately 3 sec, takes 10 h to store and 48 h to process. In this paper a case study is presented of in-vivo vector velocity estimates in different complex vessel geometries.nnnRESULTSnThe flow patterns of six bifurcations and two veins were investigated. It was shown: 1. that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2. that retrograde flow was present in the superficial branch of the femoral artery during diastole, 3. that retrograde flow was present in the subclavian artery and antegrade in the common carotid artery during diastole, 4. that vortices were formed in the sinus pockets behind the venous valves in both antegrade and retrograde flow, and 5. that secondary flow was present in various vessels.nnnCONCLUSIONnUsing a fast vector velocity ultrasound method, in-vivo scans have been recorded where complex flow patterns were visualized in greater detail than previously visualized by conventional color flow imaging techniques.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2007

Designing Waveforms for Temporal Encoding Using a Frequency Sampling Method

Fredrik Gran; Jørgen Arendt Jensen

In this paper a method for designing waveforms for temporal encoding in medical ultrasound imaging is described. The method is based on least squares optimization and is used to design nonlinear frequency modulated signals for synthetic transmit aperture imaging. By using the proposed design method, the amplitude spectrum of the transmitted waveform can be optimized, such that most of the energy is transmitted where the transducer has large amplification. To test the design method, a waveform was designed for a BK8804 linear array transducer. The resulting nonlinear frequency modulated waveform was compared to a linear frequency modulated signal with amplitude tapering, previously used in clinical studies for synthetic transmit aperture imaging. The latter had a relatively flat spectrum which implied that the waveform tried to excite all frequencies including ones with low amplification. The proposed waveform, on the other hand, was designed so that only frequencies where the transducer had a large amplification were excited. Hereby, unnecessary heating of the transducer could be avoided and the signal-to-noise ratio could be increased. The experimental ultrasound scanner RASMUS was used to evaluate the method experimentally. Due to the careful waveform design optimized for the transducer at hand, a theoretic gain in signal-to-noise ratio of 4.9 dB compared to the reference excitation was found, even though the energy of the nonlinear frequency modulated signal was 71% of the energy of the reference signal. This was supported by a signal-to-noise ratio measurement and comparison in penetration depth, where an increase of 1 cm was found in favor for the proposed waveform. Axial and lateral resolutions at full-width half-maximum were compared in a water phantom at depths of 42, 62, 82, and 102 mm. The axial resolutions of the nonlinear frequency modulated signal were 0.62, 0.69, 0.60, and 0.60 mm, respectively. The corresponding axial resolutions for the reference waveform were 0.58, 0.65, 0.62, and 0.60 mm, respectively. The compression properties of the matched filter (mismatched filter for the linear frequency modulated signal) were tested for both waveforms in simulation with respect to the Doppler frequency shift occurring when probing moving objects. It was concluded that the Doppler effect of moving targets does not significantly degrade the filtered output. Finally, in vivo measurements are shown for both methods, wherein the common carotid artery on a 27-year-old healthy male was scanned.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2008

Coded ultrasound for blood flow estimation using subband processing

Fredrik Gran; Jesper Udesen; Michael Bachmann Nielsen; Jørgen Arendt Jensen

This paper investigates the use of coded excitation for blood flow estimation in medical ultrasound. Traditional autocorrelation estimators use narrow-band excitation signals to provide sufficient signal-to-noise-ratio (SNR) and velocity estimation performance. In this paper, broadband coded signals are used to increase SNR, followed by subband processing. The received broadband signal is filtered using a set of narrow-band filters. Estimating the velocity in each of the bands and averaging the results yields better performance compared with what would be possible when transmitting a narrow-band pulse directly. Also, the spatial resolution of the narrow-band pulse would be too poor for brightness-mode (Bmode) imaging, and additional transmissions would be required to update the B-mode image. For the described approach in the paper, there is no need for additional transmissions, because the excitation signal is broadband and has good spatial resolution after pulse compression. This means that time can be saved by using the same data for B-mode imaging and blood flow estimation. Two different coding schemes are used in this paper, Barker codes and Golay codes. The performance of the codes for velocity estimation is compared with a conventional approach transmitting a narrow-band pulse. The study was carried out using an experimental ultrasound scanner and a commercial linear array 7 MHz transducer. A circulating flow rig was scanned with a beam-to-flow angle of 60deg. The flow in the rig was laminar and had a parabolic flow-profile with a peak velocity of 0.09 m/s. The mean relative standard deviation of the velocity estimate using the reference method with an 8-cycle excitation pulse at 7 MHz was 0.544% compared with the peak velocity in the rig. Two Barker codes were tested with a length of 5 and 13 bits, respectively. The corresponding mean relative standard deviations were 0.367% and 0.310%, respectively. For the Golay coded experiment, two 8-bit codes were used, and the mean relative standard deviation was 0.335%.


ieee symposium on ultrasonics | 2003

Multi element synthetic aperture transmission using a frequency division approach

Fredrik Gran; Jørgen Arendt Jensen

In synthetic aperture imaging an image is created by a number of single element defocused emissions. A low resolution image is created after every emission and a high resolution image is formed when the entire aperture has been covered. Since only one element is used at a time the energy transmitted into the tissue is low. This paper describes a novel method in which the available spectrum is divided into 2N overlapping subbands. This will assure a smooth broadband high resolution spectrum when combined. The signals are grouped into two subsets in which all signals are fully orthogonal. The transmitting elements are excited so that N virtual sources are formed. All sources are excited using one subset at a time. The signals can be separated by matched filtration, and the corresponding information is extracted. The individual source information is hence available in every emission and the method can therefore be used for flow imaging, unlike with Hadamard and Golay coding. The frequency division approach increases the SNR by a factor of N/sup 2/ compared to conventional pulsed synthetic aperture imaging, provided that N transmission centers are used. Simulations and phantom measurements are presented to verify the method.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2008

Spatial encoding using a code division technique for fast ultrasound imaging

Fredrik Gran; Jørgen Arendt Jensen

This paper describes a method for spatial encoding in synthetic transmit aperture ultrasound imaging. This allows several ultrasonic sources to be active simultaneously. The method is based on transmitting pseudorandom sequences to spatially encode the transmitters. The data can be decoded after only one transmission using the knowledge of the transmitted code sequences as opposed to other spatial encoding techniques, such as Hadamard or Golay encoding. This makes the method less sensitive to motion, and data can be acquired using fewer transmissions. The aim of this paper is to analyze the underlying theory and to test the feasibility in a physical system. The method has been evaluated in simulations using Field II in which the point-spread functions were simulated for different depths for a 7 MHz linear array transducer. A signal-to-noise ratio (SNR) simulation also was included in the study in which an improvement in SNR of ~1.5 dB was attained compared to the standard synthetic transmit aperture (STA) firing scheme. Considering the amount of energy transmitted, this value is low. A plausible explanation is given that is verified in simulation. The method also was tested in an experimental ultrasound scanner and compared to a synthetic transmit aperture ultrasound imaging scheme using a sinusoidal excitation. The performance of the proposed method was comparable to the reference with respect to axial and lateral resolution, but it displayed poorer contrast with sidelobe levels at ~ - 40 dB compared to the mainlobe.


internaltional ultrasonics symposium | 2006

P2F-6 Designing Non-Linear Frequency Modulated Signals for Medical Ultrasound Imaging

Fredrik Gran; Jørgen Arendt Jensen

In this paper a new method for designing non-linear frequency modulated (NLFM) waveforms for ultrasound imaging is proposed. The objective is to control the amplitude spectrum of the designed waveform and still keep a constant transmit amplitude, so that the transmitted energy is maximized. The signal-to-noise-ratio can in this way be optimized. The waveform design is based on least squares optimization. A desired amplitude spectrum is chosen, hereafter the phase spectrum is chosen, so that the instantaneous frequency takes on the form of a third order polynomial. The finite energy waveform is derived by minimizing the summed squared error between the desired spectrum and the obtained spectrum of the waveform. Having total control of the waveform spectrum has two advantages: First, it facilitates efficient use of the transducer passband, so that the amount of energy converted to heat in the transducer can be decreased. Secondly, by choosing an appropriate amplitude spectrum, no additional temporal tapering has to be applied to the matched filter to achieve sufficient range sidelobe suppression. Proper design results in waveforms with a range sidelobe level beyond -80 dB. The design method is tested experimentally using the RASMUS ultrasound system with a 7 MHz linear array transducer. Synthetic transmit aperture ultrasound imaging is applied to acquire data. The proposed design method was compared to a linear FM signal. Due to more efficient spectral usage, a gain in SNR of 4.3plusmn1.2 dB was measured resulting in an increase of 1 cm in penetration depth. Finally, in-vivo measurements are shown for both methods, where the common carotid artery on a 27 year old healthy male was scanned


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2008

Multi-frequency encoding for fast color flow or quadroplex imaging

Niels Oddershede; Fredrik Gran; Jørgen Arendt Jensen

Ultrasonic color flow maps are made by estimating the velocities line by line over the region of interest. For each velocity estimate, multiple repetitions are needed. This sets a limit on the frame rate, which becomes increasingly severe when imaging deeper lying structures or when simultaneously acquiring spectrogram data for triplex imaging. This paper proposes a method for decreasing the data acquisition time by simultaneously sampling multiple lines for color flow maps, using narrow band signals with approximately disjoint spectral support. The signals are separated in the receiver by filters matched to the emitted waveforms, producing a number of data sets with different center frequencies. The autocorrelation estimator is then applied to each of the data sets. The method is presented, various side effects are considered, and the method is tested on data from a recirculating flow phantom. A mean standard deviation across the flow profile of 3.1, 2.5, and 2.1% of the peak velocity was found for bands at 5 MHz, 7 MHz, and 9 MHz, respectively. Alternatively, the method can be used for simultaneously sampling data for a color flow map and for multiple spectrograms using different spectral bands. Using three spectral bands, data for a color flow map and two independent spectrograms can be acquired at the time normally spent on acquiring data for a color flow map only. This yields an expansion of triplex imaging called multi-frequency quadroplex imaging, which enables study of the flow over an arterial stenosis by simultaneously acquiring spectrograms on both sides of the stenosis, while maintaining the color flow map. The method was tested in vivo on data from the common carotid artery of a healthy male volunteer, both for fast color flow mapping and for multi-frequency quadroplex imaging.


internaltional ultrasonics symposium | 2007

11C-1 Fast Spectral Velocity Estimation Using Adaptive Techniques: In-Vivo Results

Fredrik Gran; Andreas Jakobsson; Jesper Udesen; Jørgen Arendt Jensen

Adaptive spectral estimation techniques are known to provide good spectral resolution and contrast even when the observation window (OW) is very short. In this paper two adaptive techniques are tested and compared to the averaged periodogram (Welch) for blood velocity estimation. The blood power spectral capon (BPC) method is based on a standard minimum variance technique adapted to account for both averaging over slow-time and depth. The blood amplitude and phase estimation technique (BAPES) is based on finding a set of matched filters (one for each velocity component of interest) and filtering the blood process over slow-time and averaging over depth to find the power spectral density estimate. In this paper, the two adaptive methods are explained, and performance is assessed in controlled steady flow experiments and in-vivo measurements. The three methods were tested on a circulating flow rig with a blood mimicking fluid flowing in the tube. The scanning section is submerged in water to allow ultrasound data acquisition. Data was recorded using a BK8804 linear array transducer and the RASMUS ultrasound scanner. The controlled experiments showed that the OW could be significantly reduced when applying the adaptive methods without compromising spectral resolution or contrast. The in-vivo data was acquired using a BK8812 transducer. OWs of 128, 64, 32 and 16 slow- time samples were tested. Spectrograms with duration of 2 seconds were generated. Welchs method required 128 samples to give a reasonable spectrogram, whereas the BPC only required 32 samples before the SNR became a limiting factor. The BAPES managed to display the spectrogram with sufficient quality at 16 slow-time samples.


internaltional ultrasonics symposium | 2008

Fast Blood Vector Velocity Imaging using ultrasound: In-vivo examples of complex blood flow in the vascular system

Kristoffer Lindskov Hansen; Jesper Udesen; Fredrik Gran; Jørgen Arendt Jensen; Michael Bøndergaard Nielsen

Conventional ultrasound methods for acquiring color flow images of the blood motion are restricted by a relatively low frame rate and angle dependent velocity estimates. The Plane Wave Excitation (PWE) method has been proposed to solve these limitations. The frame rate can be increased, and the 2-D vector velocity of the blood motion can be estimated. The transmitted pulse is not focused, and a full speckle image of the blood can be acquired for each emission. A 13 bit Barker code is transmitted simultaneously from each transducer element. The 2-D vector velocity of the blood is found using 2-D speckle tracking between segments in consecutive speckle images. The flow patterns of six bifurcations and two veins were investigated in-vivo. It was shown: 1) that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2) that retrograde flow was present in the superficial branch of the femoral artery during diastole, 3) that retrograde flow was present in the subclavian artery and antegrade in the common carotid artery during diastole, 4) that vortices were formed in the buckets behind the venous valves in both antegrade and retrograde flow, and 5) that secondary flow was present in various vessels. The in-vivo results have revealed complex flow patterns not previously visualized with ultrasound imaging and indicate a flow complexity in both simple and complex vessel geometries.

Collaboration


Dive into the Fredrik Gran's collaboration.

Top Co-Authors

Avatar

Jørgen Arendt Jensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Jesper Udesen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

M. Bachmann Nielsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge