Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jesper Udesen is active.

Publication


Featured researches published by Jesper Udesen.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2008

High frame-rate blood vector velocity imaging using plane waves: Simulations and preliminary experiments

Jesper Udesen; Fredrik Gran; Kristoffer Lindskov Hansen; Jørgen Arendt Jensen; Carsten Thomsen; Michael Bachmann Nielsen

Conventional ultrasound methods for acquiring color images of blood velocity are limited by a relatively low frame-rate and are restricted to give velocity estimates along the ultrasound beam direction only. To circumvent these limitations, the method presented in this paper uses 3 techniques: 1) The ultrasound is not focused during the transmissions of the ultrasound signals; 2) A 13 -bit Barker code is transmitted simultaneously from each transducer element; and 3) The 2-D vector velocity of the blood is estimated using 2-D cross-correlation. A parameter study was performed using the Field II program, and performance of the method was investigated when a virtual blood vessel was scanned by a linear array transducer. An improved parameter set for the method was identified from the parameter study, and a flow rig measurement was performed using the same improved setup as in the simulations. Finally, the common carotid artery of a healthy male was scanned with a scan sequence that satisfies the limits set by the Food and Drug Administration. Vector velocity images were obtained with a frame-rate of 100 Hz where 40 speckle images are used for each vector velocity image. It was found that the blood flow approximately followed the vessel wall, and that maximum velocity was approximately 1 m/s, which is a normal value for a healthy person. To further evaluate the method, the test person was scanned with magnetic resonance (MR) angiography. The volume flow derived from the MR scanning was compared with that from the ultrasound scanning. A deviation of 9% between the 2 volume flow estimates was found.


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2006

Investigation of transverse oscillation method

Jesper Udesen; Jørgen Arendt Jensen

Conventional ultrasound scanners can display only the axial component of the blood velocity vector, which is a significant limitation when vessels nearly parallel to the skin surface are scanned. The transverse oscillation (TO) method overcomes this limitation by introducing a TO and an axial oscillation in the pulse echo field. The theory behind the creation of the double oscillation pulse echo field is explained as well as the theory behind the estimation of the vector velocity. A parameter study of the method is performed, using the ultrasound simulation program Field II. A virtual linear-array transducer with center frequency 7 MHz and 128 active elements is created, and a virtual blood vessel of radius 6.4 mm is simulated. The performance of the TO method is found around an initial point in the parameter space. The parameters varied are: flow angle, transmit focus depth, receive apodization, pulse length, transverse wave length, number of emissions, signal-to-noise ratio (SNR), and type of echo-canceling filter used. Using an experimental scanner, the performance of the TO method is evaluated. An experimental flowrig is used to create laminar parabolic flow in a blood mimicking fluid, and the fluid is scanned under different flow-to-beam angles. The relative standard deviation on the transverse velocity estimate is found to be less than 10% for all angles between 50deg and 90deg. Furthermore, the TO method is evaluated in the flowrig using pulsatile flow, which resembles the flow in the femoral artery. The estimated volume flow as a function of time is compared to the volume flow derived from a conventional axial method at a flow-to-beam angle of 60deg. It is found that the method is highly sensitive to the angle between the flow and the beam direction. Also, the choice of echo canceling filter affects the performance significantly


IEEE Transactions on Ultrasonics Ferroelectrics and Frequency Control | 2009

In vivo validation of a blood vector velocity estimator with MR angiography

Kristoffer Lindskov Hansen; Jesper Udesen; Carsten Thomsen; Jørgen Arendt Jensen; Michael B. Nielsen

Conventional Doppler methods for blood velocity estimation only estimate the velocity component along the ultrasound beam direction. This implies that a Doppler angle under examination close to 90deg results in unreliable information about the true blood direction and blood velocity. The novel method transverse oscillation (TO), which combines estimates of the axial and the transverse velocity components in the scan plane, makes it possible to estimate the vector velocity of the blood regardless of the Doppler angle. The present study evaluates the TO method with magnetic resonance phase contrast angiography (MRA) by comparing in vivo measurements of stroke volume. Eleven healthy volunteers were included in this prospective study. From the obtained data sets recorded with the 2 modalities, vector velocity sequences were constructed and stroke volume calculated. Angle of insonation was approximately 90deg for TO measurements. The correlation between the stroke volume estimated by TO and MRA was 0.91 (p<0.01) with the equation for the line of regression: MRA=1.1ldrTO-0.4. A Bland-Altman plot was additionally constructed where the mean difference was 0.2 ml with limits of agreement at -1.4 ml and 1.9 ml. The results indicate that reliable vector velocity estimates can be obtained in vivo using the presented angle-independent 2-D vector velocity method. The TO method can be a useful alternative to conventional Doppler systems by avoiding the angle artifact, thus giving quantitative velocity information.


Ultraschall in Der Medizin | 2009

In-vivo examples of flow patterns with the fast vector velocity ultrasound method.

Kristoffer Lindskov Hansen; Jesper Udesen; Fredrik Gran; Jørn Jensen; M. Bachmann Nielsen

PURPOSE Conventional ultrasound methods for acquiring color flow images of the blood motion are limited by a relatively low frame rate and are restricted to only giving velocity estimates along the ultrasound beam direction. To circumvent these limitations, the Plane Wave Excitation (PWE) method has been proposed. MATERIAL AND METHODS The PWE method can estimate the 2D vector velocity of the blood with a high frame rate. Vector velocity estimates are acquired by using the following approach: The ultrasound is not focused during the ultrasound transmission, and a full speckle image of the blood can be acquired for each pulse emission. The pulse is a 13 bit Barker code transmitted simultaneously from each transducer element. The 2D vector velocity of the blood is found using 2D speckle tracking between segments in consecutive speckle images. Implemented on the experimental scanner RASMUS and using a 100 CPU linux cluster for post processing, PWE can achieve a frame of 100 Hz where one vector velocity sequence of approximately 3 sec, takes 10 h to store and 48 h to process. In this paper a case study is presented of in-vivo vector velocity estimates in different complex vessel geometries. RESULTS The flow patterns of six bifurcations and two veins were investigated. It was shown: 1. that a stable vortex in the carotid bulb was present opposed to other examined bifurcations, 2. that retrograde flow was present in the superficial branch of the femoral artery during diastole, 3. that retrograde flow was present in the subclavian artery and antegrade in the common carotid artery during diastole, 4. that vortices were formed in the sinus pockets behind the venous valves in both antegrade and retrograde flow, and 5. that secondary flow was present in various vessels. CONCLUSION Using a fast vector velocity ultrasound method, in-vivo scans have been recorded where complex flow patterns were visualized in greater detail than previously visualized by conventional color flow imaging techniques.


Ultrasonics | 2009

In vivo comparison of three ultrasound vector velocity techniques to MR phase contrast angiography.

Kristoffer Lindskov Hansen; Jesper Udesen; Niels Oddershede; Lasse Henze; Carsten Thomsen; Jørgen Arendt Jensen; Michael Bachmann Nielsen

The objective of this paper is to validate angle independent vector velocity methods for blood velocity estimation. Conventional Doppler ultrasound (US) only estimates the blood velocity along the US beam direction where the estimate is angle corrected assuming laminar flow parallel to vessel boundaries. This results in incorrect blood velocity estimates, when angle of insonation approaches 90 degrees or when blood flow is non-laminar. Three angle independent vector velocity methods are evaluated in this paper: directional beamforming (DB), synthetic aperture flow imaging (STA) and transverse oscillation (TO). The performances of the three methods were investigated by measuring the stroke volume in the right common carotid artery of 11 healthy volunteers with magnetic resonance phase contrast angiography (MRA) as reference. The correlation with confidence intervals (CI) between the three vector velocity methods and MRA were: DB vs. MRA: R=0.84 (p<0.01, 95% CI: 0.49-0.96); STA vs. MRA: R=0.71 (p<0.05, 95% CI: 0.19-0.92) and TO vs. MRA: R=0.91 (p<0.01, 95% CI: 0.69-0.98). No significant differences were observed for any of the three comparisons (DB vs. MRA: p=0.65; STA vs. MRA: p=0.24; TO vs. MRA: p=0.36). Bland-Altman plots were additionally constructed, and mean differences with limits of agreements (LoA) for the three comparisons were: DB vs. MRA=0.17 ml (95% CI: -0.61-0.95) with LoA=-2.11-2.44 ml; STA vs. MRA=-0.55 ml (95% CI: -1.54-0.43) with LoA=-3.42-2.32 ml; TO vs. MRA=0.24 ml (95% CI: -0.32-0.81) with LoA=-1.41-1.90 ml. According to the results, reliable volume flow estimates can be obtained with all three methods. The three US vector velocity techniques can yield quantitative insight into flow dynamics and visualize complex flow patterns, which potentially can give the clinician a novel tool for cardiovascular disease assessment.


internaltional ultrasonics symposium | 2008

Pulse wave velocity in the carotid artery

Gertrud Laura Sørensen; Julie Brinck Jensen; Jesper Udesen; Iben Kraglund Holfort; Jørgen Arendt Jensen

The pulse wave velocity (PWV) in the carotid artery (CA) has been estimated based on ultrasound data collected by the experimental scanner RASMUS at DTU. Data is collected from one test subject using a frame rate (FR) of 4000 Hz. The influence of FRs is also investigated. The PWV is calculated from distension wave forms (DWF) estimated using cross-correlation. The obtained velocities give results in the area between 3-4 m/s, and the deviations between estimated PWV from two beats of a pulse are around 10%. The results indicate that the method presented is applicable for detecting the local PWV. Additional studies with data collections from several test subjects are required to determine the accuracy of the approach. Based on a spectrum analysis it appears that there is no gain from using FRs above 1000 Hz, but it is shown that FRs below 1000 Hz do not give accurate PWVs.


internaltional ultrasonics symposium | 2011

Recent advances in blood flow vector velocity imaging

Jørgen Arendt Jensen; Svetoslav Ivanov Nikolov; Jesper Udesen; Peter Munk; Kristoffer Lindskov Hansen; Mads Møller Pedersen; Peter Møller Hansen; Michael Bachmann Nielsen; Niels Oddershede; Jacob Kortbek; Michael Johannes Pihl; Ye Li

A number of methods for ultrasound vector velocity imaging are presented in the paper. The transverse oscillation (TO) method can estimate the velocity transverse to the ultrasound beam by introducing a lateral oscillation in the received ultrasound field. The approach has been thoroughly investigated using both simulations, flow rig measurements, and in-vivo validation against MR scans. The TO method obtains a relative accuracy of 10% for a fully transverse flow in both simulations and flow rig experiments. In-vivo studies performed on 11 healthy volunteers comparing the TO method with magnetic resonance phase contrast angiography (MRA) revealed a correlation between the stroke volume estimated by TO and MRA of 0.91 (p<;0.01) with an equation for the line of regression given as: MRA = 1.1 · TO-0.4 ml. Several clinical examples of complex flow in e.g. bifurcations and around valves have been acquired using a commercial implementation of the method (BK Medical ProFocus Ultraview scanner). A range of other methods are also presented. This includes synthetic aperture imaging using either spherical or plane waves with velocity estimation performed with directional beamforming or speckle tracking. The key advantages of these techniques are very fast imaging that can attain an order of magnitude higher precision than conventional methods. SA flow imaging was implemented on the experimental scanner RASMUS using an 8-emission spherical emission sequence and reception of 64 channels on a BK Medical 8804 transducer. This resulted in a relative standard deviation of 1.2% for a fully transverse flow. Plane wave imaging was also implemented on the RASMUS scanner and a 100 Hz frame rate was attained. Several vector velocity image sequences of complex flow were acquired, which demonstrates the benefits of fast vector flow imaging. A method for extending the 2D TO method to 3D vector velocity estimation is presented and the implications for future vector velocity imaging is indicated.


ieee symposium on ultrasonics | 2003

Experimental investigation of transverse flow estimation using transverse oscillation

Jesper Udesen; J. Arendt Jensen

Conventional ultrasound scanners can only display the blood velocity component parallel to the ultrasound beam. Introducing a laterally oscillating field gives signals from which the transverse velocity component can be estimated using 2:1 parallel receive beamformers. To yield the performance of the approach, this paper presents simulated and experimental results, obtained at a blood velocity angle transverse to the ultrasound beam. The Field II program is used to simulate a setup with a 128 element linear array transducer. At a depth 27 mm a virtual blood vessel of radius 2.4 mm is situated perpendicular to the ultrasound beam. The velocity profile of the blood is parabolic, and the speed of the blood in the center of the vessel is 1.1 m/s. An extended autocorrelation algorithm is used for velocity estimation for 310 trials, each containing 32 beamformed signals. The velocity can be estimated with a mean relative bias of 6.3% and a mean relative standard deviation of 5.4% over the entire vessel length. With the experimental ultrasound scanner RASMUS the simulations are reproduced in an experimental flow phantom using a linear array transducer and vessel characteristics as in the simulations. The flow is generated with the Compuflow 1000 programmable flow pump giving a parabolic velocity profile of the blood mimicking fluid in the flow phantom. The profiles are estimated for 310 trials each containing of 32 data vectors. The relative mean bias over entire blood vessel is found to be 10.0% and the relative mean standard deviation is found to be 9.8%. With the Compuflow 1000 programmable flow pump a color flow mode image is produced of the experimental setup for a parabolic flow. Also the flow of the human femoralis is reproduced and it is found that the characteristics of the flow can be estimated.


internaltional ultrasonics symposium | 2007

11C-4 Fast Blood Vector Velocity Imaging: Simulations and Preliminary In Vivo Results

Jesper Udesen; Fredrik Gran; Kristoffer Lindskov Hansen; Jørgen Arendt Jensen; Carsten Thomsen; Michael Bachmann Nielsen

Conventional ultrasound methods for acquiring color flow images of the blood velocity are limited by a relatively low frame rate and are restricted to only give velocity estimates along the ultrasound beam direction. To circumvent these limitations, we propose a method where the frame rate can be significantly increased, and the full 2-D vector velocity of the blood can be estimated. The method presented in this paper uses three techniques: 1) The ultrasound is not focused during the transmit of the ultrasound signals, and a full speckle image of the blood can be acquired for each pulse emission. 2) The transmitted pulse consists of a 13 bit Barker code which is transmitted simultaneously from each transducer element. 3) The 2-D vector velocity of the blood is found using 2- D speckle tracking between segments in consecutive speckle images. The method was tested with a 5.5 MHz linear array transducer scanning a flow phantom. This was done first with the Field II ultrasound simulation program. Standard deviation and bias of the velocity estimates were evaluated when six parameters were changed around an initial point. The conclusions drawn from the simulations were then used in a scanning with our experimental RASMUS scanner. The same setup as in the simulations was used, and the standard deviation and bias were found. Finally, the common carotid artery of a healthy 36 year old male was scanned for 1.29 sec. with the RASMUS scanner, and 129 independent vector velocity images were acquired with a frame rate of 100 Hz. The derived volume flow estimates were compared with MR angiography, and a deviation of 9 % was found.


Medical Imaging 2005: Ultrasonic Imaging and Signal Processing | 2005

Fast color flow mode imaging using plane wave excitation and temporal encoding

Jesper Udesen; Fredrik Gran; Jørgen Arendt Jensen

In conventional ultrasound color flow mode imaging, a large number (~500) of pulses have to be emitted in order to form a complete velocity map. This lowers the frame-rate and temporal resolution. A method for color flow imaging in which a few (~10) pulses have to be emitted to form a complete velocity image is presented. The method is based on using a plane wave excitation with temporal encoding to compensate for the decreased SNR, resulting from the lack of focusing. The temporal encoding is done with a linear frequency modulated signal. To decrease lateral sidelobes, a Tukey window is used as apodization on the transmitting aperture. The data are beamformed along the direction of the flow, and the velocity is found by 1-D cross correlation of these data. First the method is evaluated in simulations using the Field II program. Secondly, the method is evaluated using the experimental scanner RASMUS and a 7 MHz linear array transducer, which scans a circulating flowrig. The velocity of the blood mimicking fluid in the flowrig is constant and parabolic, and the center of the scanned area is situated at a depth of 40 mm. A CFM image of the blood flow in the flowrig is estimated from two pulse emissions. At the axial center line of the CFM image, the velocity is estimated over the vessel with a mean relative standard deviation of 2.64% and a mean relative bias of 6.91%. At an axial line 5 mm to the right of the center of the CFM image, the velocity is estimated over the vessel with a relative standard deviation of 0.84% and a relative bias of 5.74%. Finally the method is tested on the common carotid artery of a healthy 33-year-old male.

Collaboration


Dive into the Jesper Udesen's collaboration.

Top Co-Authors

Avatar

Jørgen Arendt Jensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Fredrik Gran

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carsten Thomsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joergen Arendt Jensen

Technical University of Denmark

View shared research outputs
Top Co-Authors

Avatar

Kristina Rue Nielsen

Copenhagen University Hospital

View shared research outputs
Top Co-Authors

Avatar

Lasse Henze

Technical University of Denmark

View shared research outputs
Researchain Logo
Decentralizing Knowledge