Fredrik Rosqvist
Uppsala University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fredrik Rosqvist.
Journal of Internal Medicine | 2013
Matti Uusitupa; Kjeld Hermansen; Markku J. Savolainen; Ursula Schwab; Marjukka Kolehmainen; Lea Brader; Lene S. Mortensen; Lieselotte Cloetens; Anna Johansson-Persson; Gunilla Önning; Mona Landin-Olsson; Karl-Heinz Herzig; Janne Hukkanen; Fredrik Rosqvist; David Iggman; Jussi Paananen; Kari Pulkki; M. Siloaho; Lars O. Dragsted; Thaer Barri; Kim Overvad; K. E. Bach Knudsen; Mette Skou Hedemann; Peter Arner; Ingrid Dahlman; Grethe Iren A. Borge; P. Baardseth; Stine M. Ulven; Ingibjorg Gunnarsdottir; Svandis Jonsdottir
Different healthy food patterns may modify cardiometabolic risk. We investigated the effects of an isocaloric healthy Nordic diet on insulin sensitivity, lipid profile, blood pressure and inflammatory markers in people with metabolic syndrome.
Diabetes | 2014
Fredrik Rosqvist; David Iggman; Joel Kullberg; Jonathan Cedernaes; Hans-Erik Johansson; Anders Larsson; Lars Johansson; Håkan Ahlström; Peter Arner; Ingrid Dahlman; Ulf Risérus
Excess ectopic fat storage is linked to type 2 diabetes. The importance of dietary fat composition for ectopic fat storage in humans is unknown. We investigated liver fat accumulation and body composition during overfeeding saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs). LIPOGAIN was a double-blind, parallel-group, randomized trial. Thirty-nine young and normal-weight individuals were overfed muffins high in SFAs (palm oil) or n-6 PUFAs (sunflower oil) for 7 weeks. Liver fat, visceral adipose tissue (VAT), abdominal subcutaneous adipose tissue (SAT), total adipose tissue, pancreatic fat, and lean tissue were assessed by magnetic resonance imaging. Transcriptomics were performed in SAT. Both groups gained similar weight. SFAs, however, markedly increased liver fat compared with PUFAs and caused a twofold larger increase in VAT than PUFAs. Conversely, PUFAs caused a nearly threefold larger increase in lean tissue than SFAs. Increase in liver fat directly correlated with changes in plasma SFAs and inversely with PUFAs. Genes involved in regulating energy dissipation, insulin resistance, body composition, and fat-cell differentiation in SAT were differentially regulated between diets, and associated with increased PUFAs in SAT. In conclusion, overeating SFAs promotes hepatic and visceral fat storage, whereas excess energy from PUFAs may instead promote lean tissue in healthy humans.
The American Journal of Clinical Nutrition | 2015
Fredrik Rosqvist; Annika Smedman; Helena Lindmark-Månsson; Marie Paulsson; Paul Petrus; Sara Straniero; Mats Rudling; Ingrid Dahlman; Ulf Risérus
BACKGROUND Butter is rich in saturated fat [saturated fatty acids (SFAs)] and can increase plasma low density lipoprotein (LDL) cholesterol, which is a major risk factor for cardiovascular disease. However, compared with other dairy foods, butter is low in milk fat globule membrane (MFGM) content, which encloses the fat. We hypothesized that different dairy foods may have distinct effects on plasma lipids because of a varying content of MFGM. OBJECTIVE We aimed to investigate whether the effects of milk fat on plasma lipids and cardiometabolic risk markers are modulated by the MFGM content. DESIGN The study was an 8-wk, single-blind, randomized, controlled isocaloric trial with 2 parallel groups including overweight men and women (n = 57 randomly assigned). For the intervention, subjects consumed 40 g milk fat/d as either whipping cream (MFGM diet) or butter oil (control diet). Intervention foods were matched for total fat, protein, carbohydrates, and calcium. Subjects were discouraged from consuming any other dairy products during the study. Plasma markers of cholesterol absorption and hepatic cholesterol metabolism were assessed together with global gene-expression analyses in peripheral blood mononuclear cells. RESULTS As expected, the control diet increased plasma lipids, whereas the MFGM diet did not [total cholesterol (±SD): +0.30 ± 0.49 compared with -0.04 ± 0.49 mmol/L, respectively (P = 0.024); LDL cholesterol: +0.36 ± 0.50 compared with +0.04 ± 0.36 mmol/L, respectively (P = 0.024); apolipoprotein B:apolipoprotein A-I ratio: +0.03 ± 0.09 compared with -0.05 ± 0.10 mmol/L, respectively (P = 0.007); and non-HDL cholesterol: +0.24 ± 0.49 compared with -0.14 ± 0.51 mmol/L, respectively (P = 0.013)]. HDL-cholesterol, triglyceride, sitosterol, lathosterol, campesterol, and proprotein convertase subtilisin/kexin type 9 plasma concentrations and fatty acid compositions did not differ between groups. Nineteen genes were differentially regulated between groups, and these genes were mostly correlated with lipid changes. CONCLUSIONS In contrast to milk fat without MFGM, milk fat enclosed by MFGM does not impair the lipoprotein profile. The mechanism is not clear although suppressed gene expression by MFGM correlated inversely with plasma lipids. The food matrix should be considered when evaluating cardiovascular aspects of different dairy foods. This trial was registered at clinicaltrials.gov as NCT01767077.
European Journal of Clinical Nutrition | 2014
Ola Kally Magnusdottir; Rikard Landberg; Ingibjorg Gunnarsdottir; Lieselotte Cloetens; Björn Åkesson; Mona Landin-Olsson; Fredrik Rosqvist; David Iggman; Ursula Schwab; K-H Herzig; Markku J. Savolainen; Lea Brader; Kjeld Hermansen; Marjukka Kolehmainen; Kaisa Poutanen; Matti Uusitupa; Inga Thorsdottir; Ulf Risérus
Background/Objectives:Few studies have used biomarkers of whole-grain intake to study its relation to glucose metabolism. We aimed to investigate the association between plasma alkylresorcinols (AR), a biomarker of whole-grain rye and wheat intake, and glucose metabolism in individuals with metabolic syndrome (MetS).Subjects/Methods:Participants were 30–65 years of age, with body mass index 27–40 kg/m2 and had MetS without diabetes. Individuals were recruited through six centers in the Nordic countries and randomized to a healthy Nordic diet (ND, n=96), rich in whole-grain rye and wheat, or a control diet (n=70), for 18–24 weeks. In addition, associations between total plasma AR concentration and C17:0/C21:0 homolog ratio as an indication of the relative whole-grain rye intake, and glucose metabolism measures from oral glucose tolerance tests were investigated in pooled (ND+control) regression analyses at 18/24 weeks.Results:ND did not improve glucose metabolism compared with control diet, but the AR C17:0/C21:0 ratio was inversely associated with fasting insulin concentrations (P=0.002) and positively associated with the insulin sensitivity indices Matsuda ISI (P=0.026) and disposition index (P=0.022) in pooled analyses at 18/24 weeks, even after adjustment for confounders. The AR C17:0/C21:0 ratio was not significantly associated with insulin secretion indices. Total plasma AR concentration was not related to fasting plasma glucose or fasting insulin at 18/24 weeks.Conclusions:The AR C17:0/C21:0 ratio, an indicator of relative whole-grain rye intake, is associated with increased insulin sensitivity in a population with MetS.
The American Journal of Clinical Nutrition | 2015
Marjukka Kolehmainen; Stine M. Ulven; Jussi Paananen; Vanessa Derenji Ferreira de Mello; Ursula Schwab; Carsten Carlberg; Mari C. W. Myhrstad; Jussi Pihlajamäki; Elisabeth Dungner; Eva Sjölin; Ingibjorg Gunnarsdottir; Lieselotte Cloetens; Mona Landin-Olsson; Björn Åkesson; Fredrik Rosqvist; Janne Hukkanen; Karl-Heinz Herzig; Lars O. Dragsted; Markku J. Savolainen; Lea Brader; Kjeld Hermansen; Ulf Risérus; Inga Thorsdottir; Kaisa Poutanen; Matti Uusitupa; Peter Arner; Ingrid Dahlman
BACKGROUND Previously, a healthy Nordic diet (ND) has been shown to have beneficial health effects close to those of Mediterranean diets. OBJECTIVE The objective was to explore whether the ND has an impact on gene expression in abdominal subcutaneous adipose tissue (SAT) and whether changes in gene expression are associated with clinical and biochemical effects. DESIGN Obese adults with features of the metabolic syndrome underwent an 18- to 24-wk randomized intervention study comparing the ND with the control diet (CD) (the SYSDIET study, carried out within Nordic Centre of Excellence of the Systems Biology in Controlled Dietary Interventions and Cohort Studies). The present study included participants from 3 Nordic SYSDIET centers [Kuopio (n = 20), Lund (n = 18), and Oulu (n = 18)] with a maximum weight change of ±4 kg, highly sensitive C-reactive protein concentration <10 mg/L at the beginning and the end of the intervention, and baseline body mass index (in kg/m²) <38. SAT biopsy specimens were obtained before and after the intervention and subjected to global transcriptome analysis with Gene 1.1 ST Arrays (Affymetrix). RESULTS Altogether, 128 genes were differentially expressed in SAT between the ND and CD (nominal P < 0.01; false discovery rate, 25%). These genes were overrepresented in pathways related to immune response (adjusted P = 0.0076), resulting mainly from slightly decreased expression in the ND and increased expression in the CD. Immune-related pathways included leukocyte trafficking and macrophage recruitment (e.g., interferon regulatory factor 1, CD97), adaptive immune response (interleukin32, interleukin 6 receptor), and reactive oxygen species (neutrophil cytosolic factor 1). Interestingly, the regulatory region of the 128 genes was overrepresented for binding sites for the nuclear transcription factor κB. CONCLUSION A healthy Nordic diet reduces inflammatory gene expression in SAT compared with a control diet independently of body weight change in individuals with features of the metabolic syndrome.
Journal of Nutrition | 2014
Matti Marklund; Ola Kally Magnusdottir; Fredrik Rosqvist; Lieselotte Cloetens; Rikard Landberg; Marjukka Kolehmainen; Lea Brader; Kjeld Hermansen; Kaisa Poutanen; Karl-Heinz Herzig; Janne Hukkanen; Markku J. Savolainen; Lars O. Dragsted; Ursula Schwab; Jussi Paananen; Matti Uusitupa; Björn Åkesson; Inga Thorsdottir; Ulf Risérus
Assessment of compliance with dietary interventions is necessary to understand the observed magnitude of the health effects of the diet per se. To avoid reporting bias, different dietary biomarkers (DBs) could be used instead of self-reported data. However, few studies investigated a combination of DBs to assess compliance and its influence on cardiometabolic risk factors. The objectives of this study were to use a combination of DBs to assess compliance and to investigate how a healthy Nordic diet (ND) influences cardiometabolic risk factors in participants with high apparent compliance compared with the whole study population. From a recently conducted isocaloric randomized trial, SYSDIET (Systems Biology in Controlled Dietary Interventions and Cohort Studies), in 166 individuals with metabolic syndrome, several DBs were assessed to reflect different key components of the ND: canola oil (serum phospholipid α-linolenic acid), fatty fish [eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)], vegetables (plasma β-carotene), and whole grains (plasma alkylresorcinols). High-fat dairy intake (expectedly low in the ND) was reflected by serum pentadecanoic acid. All participants with biomarker data (n = 154) were included in the analyses. Biomarkers were combined by using a biomarker rank score (DB score) and principal component analysis (PCA). The DB score was then used to assess compliance. During the intervention, median concentrations of alkylresorcinols, α-linolenic acid, EPA, and DHA were >25% higher in the ND individuals than in the controls (P < 0.05), whereas median concentrations of pentadecanoic acid were 14% higher in controls (P < 0.05). Median DB score was 57% higher in the ND than in controls (P < 0.001) during the intervention, and participants were ranked similarly by DB score and PCA score. Overall, estimates of group difference in cardiometabolic effects generally appeared to be greater among compliant participants than in the whole study population (e.g., estimates of treatment effects on blood pressure and lipoproteins were ∼1.5- to 2-fold greater in the most compliant participants), suggesting that poor compliance attenuated the dietary effects. With adequate consideration of their limitations, DB combinations (e.g., DB score) could be useful for assessing compliance in intervention studies investigating cardiometabolic effects of healthy dietary patterns. The study was registered at clinicaltrials.gov as NCT00992641.
The American Journal of Clinical Nutrition | 2017
Alexander Perfilyev; Ingrid Dahlman; Linn Gillberg; Fredrik Rosqvist; David Iggman; Petr Volkov; Emma Nilsson; Ulf Risérus; Charlotte Ling
Background: Dietary fat composition can affect ectopic lipid accumulation and, thereby, insulin resistance. Diets that are high in saturated fatty acids (SFAs) or polyunsaturated fatty acids (PUFAs) have different metabolic responses.Objective: We investigated whether the epigenome of human adipose tissue is affected differently by dietary fat composition and general overfeeding in a randomized trial.Design: We studied the effects of 7 wk of excessive SFA (n = 17) or PUFA (n = 14) intake (+750 kcal/d) on the DNA methylation of ∼450,000 sites in human subcutaneous adipose tissue. Both diets resulted in similar body weight increases. We also combined the data from the 2 groups to examine the overall effect of overfeeding on the DNA methylation in adipose tissue.Results: The DNA methylation of 4875 Cytosine-phosphate-guanine (CpG) sites was affected differently between the 2 diets. Furthermore, both the SFA and PUFA diets increased the mean degree of DNA methylation in adipose tissue, particularly in promoter regions. However, although the mean methylation was changed in 1797 genes [e.g., alpha-ketoglutarate dependent dioxygenase (FTO), interleukin 6 (IL6), insulin receptor (INSR), neuronal growth regulator 1 (NEGR1), and proopiomelanocortin (POMC)] by PUFAs, only 125 genes [e.g., adiponectin, C1Q and collagen domain containing (ADIPOQ)] were changed by SFA overfeeding. In addition, the SFA diet significantly altered the expression of 28 transcripts [e.g., acyl-CoA oxidase 1 (ACOX1) and FAT atypical cadherin 1 (FAT1)], whereas the PUFA diet did not significantly affect gene expression. When the data from the 2 diet groups were combined, the mean methylation of 1444 genes, including fatty acid binding protein 1 (FABP1), fatty acid binding protein 2 (FABP2), melanocortin 2 receptor (MC2R), MC3R, PPARG coactivator 1 α (PPARGC1A), and tumor necrosis factor (TNF), was changed in adipose tissue by overfeeding. Moreover, the baseline DNA methylation of 12 CpG sites that was annotated to 9 genes [e.g., mitogen-activated protein kinase 7 (MAPK7), melanin concentrating hormone receptor 1 (MCHR1), and splicing factor SWAP homolog (SFRS8)] was associated with the degree of weight increase in response to extra energy intake.Conclusions: SFA overfeeding and PUFA overfeeding induce distinct epigenetic changes in human adipose tissue. In addition, we present data that suggest that baseline DNA methylation can predict weight increase in response to overfeeding in humans. This trial was registered at clinicaltrials.gov as NCT01427140.
PLOS ONE | 2014
Ola Kally Magnusdottir; Rikard Landberg; Ingibjorg Gunnarsdottir; Lieselotte Cloetens; Björn Åkesson; Fredrik Rosqvist; Ursula Schwab; Karl-Heinz Herzig; Janne Hukkanen; Markku J. Savolainen; Lea Brader; Kjeld Hermansen; Marjukka Kolehmainen; Kaisa Poutanen; Matti Uusitupa; Ulf Risérus; Inga Thorsdottir
Background and Aim Few studies have explored the possible plasma cholesterol lowering effects of rye consumption. The aim of this secondary analysis in the SYSDIET study was to investigate the association between plasma alkylresorcinols (AR), a biomarker for whole grain wheat and rye intake, and blood lipid concentrations in a population with metabolic syndrome. Furthermore, we analyzed the associations between the AR C17∶0/C21∶0 ratio, a suggested marker of the relative intake of whole grain/bran rye, and blood lipid concentrations. Methods Participants were 30–65 years of age, with body mass index (BMI) 27–40 kg/m2 and had metabolic syndrome. Individuals were recruited through six centers in the Nordic countries and randomized either to a healthy Nordic diet (ND, n = 93), rich in whole grain rye and wheat, as well as berries, fruits and vegetables, rapeseed oil, three fish meals per week and low-fat dairy products, or a control diet (n = 65) for 18/24 weeks. Associations between total plasma AR concentration and C17∶0/C21∶0 homologue ratio and blood lipids were investigated in pooled (ND + control group) regression analyses at 18/24 weeks adjusted for baseline value for the dependent variable, age, BMI and statin use. Results When adjusted for confounders, total plasma AR at 18/24 weeks was not significantly associated with blood lipids but the AR ratio C17∶0/C21∶0 was inversely associated with LDL cholesterol concentrations (B (95% CI): −0.41 (−0.80 to −0.02)), log LDL/HDL cholesterol ratio (−0.20 (−0.37 to −0.03)), log non-HDL cholesterol (−0.20 (−0.37 to −0.03)), log apolipoprotein B (−0.12 (−0.24 to 0.00)) and log triglyceride concentrations (−0.35 (−0.59 to −0.12)). Discussion Increased proportion of whole grain rye, reflected by a biomarker, in the diet is associated with favorable blood lipid outcomes, a relationship that should be further investigated. Trial Registration ClinicalTrials.gov NCT00992641
Journal of Nutrition | 2013
Ola Kally Magnusdottir; Rikard Landberg; Ingibjorg Gunnarsdottir; Lieselotte Cloetens; Björn Åkesson; Gunilla Önning; Svandis Jonsdottir; Fredrik Rosqvist; Ursula Schwab; Karl-Heinz Herzig; Markku J. Savolainen; Lea Brader; Kjeld Hermansen; Marjukka Kolehmainen; Kaisa Poutanen; Matti Uusitupa; Inga Thorsdottir; Ulf Risérus
Biomarkers of dietary intake can be important tools in nutrition research. Our aim was to assess whether plasma alkylresorcinol (AR) and β-carotene concentrations could be used as dietary biomarkers for whole-grain, fruits and vegetables in a healthy Nordic diet (ND). Participants (n = 166), 30-65 y with a body mass index of 27-40 kg/m(2) and two more features of metabolic syndrome (International Diabetes Federation definition, slightly modified), were recruited through six centers in the Nordic countries and randomly assigned to an ND or control diet for 18 or 24 wk, depending on study center. Plasma AR and β-carotene were analyzed and nutrient intake calculated from 4-d food records. Median fiber intake increased in the ND group from 2.5 g/MJ at baseline to 4.1 g/MJ (P < 0.001) at end point (week 18 or 24), and median (IQR) fasting plasma total AR concentration increased from 73 (88) to 106 (108) nmol/L, or 45%, from baseline to end point (P < 0.001). The AR concentration was significantly higher in the ND group (P < 0.001) than in the control group at end point. β-Carotene intake tended to increase in the ND group (P = 0.07), but the plasma β-carotene concentration did not change significantly throughout the study and did not differ between the groups at follow-up. In conclusion, an ND resulted in higher dietary fiber intake and increased plasma total AR concentration compared with the control diet, showing that the total AR concentration might be a valid biomarker for an ND in which whole-grain wheat and rye are important components. No significant difference in plasma β-carotene concentrations was observed between the ND and control groups, suggesting that β-carotene may not be a sensitive enough biomarker of the ND.
Journal of the American Heart Association | 2014
David Iggman; Fredrik Rosqvist; Anders Larsson; Johan Ärnlöv; Lena Beckman; Mats Rudling; Ulf Risérus
Background Whether the type of dietary fat could alter cardiometabolic responses to a hypercaloric diet is unknown. In addition, subclinical cardiometabolic consequences of moderate weight gain require further study. Methods and Results In a 7‐week, double‐blind, parallel‐group, randomized controlled trial, 39 healthy, lean individuals (mean age of 27±4) consumed muffins (51% of energy [%E] from fat and 44%E refined carbohydrates) providing 750 kcal/day added to their habitual diets. All muffins had identical contents, except for type of fat; sunflower oil rich in polyunsaturated fatty acids (PUFA diet) or palm oil rich in saturated fatty acids (SFA diet). Despite comparable weight gain in the 2 groups, total: high‐density lipoprotein (HDL) cholesterol, low‐density lipoprotein:HDL cholesterol, and apolipoprotein B:AI ratios decreased during the PUFA versus the SFA diet (−0.37±0.59 versus +0.07±0.29, −0.31±0.49 versus +0.05±0.28, and −0.07±0.11 versus +0.01±0.07, P=0.003, P=0.007, and P=0.01 for between‐group differences), whereas no significant differences were observed for other cardiometabolic risk markers. In the whole group (ie, independently of fat type), body weight increased (+2.2%, P<0.001) together with increased plasma proinsulin (+21%, P=0.007), insulin (+17%, P=0.003), proprotein convertase subtilisin/kexin type 9, (+9%, P=0.008) fibroblast growth factor‐21 (+31%, P=0.04), endothelial markers vascular cell adhesion molecule–1, intercellular adhesion molecule–1, and E‐selectin (+9, +5, and +10%, respectively, P<0.01 for all), whereas nonesterified fatty acids decreased (−28%, P=0.001). Conclusions Excess energy from PUFA versus SFA reduces atherogenic lipoproteins. Modest weight gain in young individuals induces hyperproinsulinemia and increases biomarkers of endothelial dysfunction, effects that may be partly outweighed by the lipid‐lowering effects of PUFA. Clinical Trial Registration URL: http://ClinicalTrials.gov. Unique identifier: NCT01427140.