Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fredrik Söderlind is active.

Publication


Featured researches published by Fredrik Söderlind.


Nanotechnology | 2007

Polyethylene glycol-covered ultra-small Gd2O3 nanoparticles for positive contrast at 1.5 T magnetic resonance clinical scanning

Marc-André Fortin; Rodrigo Petoral; Fredrik Söderlind; Anna Klasson; Maria Engström; Teodor Veres; Per-Olov Käll; Kajsa Uvdal

The size distribution and magnetic properties of ultra-small gadolinium oxide crystals (US-Gd2O3) were studied, and the impact of polyethylene glycol capping on the relaxivity constants (r1, r2) an ...


Langmuir | 2010

Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement

Maria Ahrén; Linnéa Selegård; Anna Klasson; Fredrik Söderlind; Natalia Abrikossova; Caroline Skoglund; Torbjörn Bengtsson; Maria Engström; Per-Olov Käll; Kajsa Uvdal

Recently, much attention has been given to the development of biofunctionalized nanoparticles with magnetic properties for novel biomedical imaging. Guided, smart, targeting nanoparticulate magnetic resonance imaging (MRI) contrast agents inducing high MRI signal will be valuable tools for future tissue specific imaging and investigation of molecular and cellular events. In this study, we report a new design of functionalized ultrasmall rare earth based nanoparticles to be used as a positive contrast agent in MRI. The relaxivity is compared to commercially available Gd based chelates. The synthesis, PEGylation, and dialysis of small (3-5 nm) gadolinium oxide (DEG-Gd(2)O(3)) nanoparticles are presented. The chemical and physical properties of the nanomaterial were investigated with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. Neutrophil activation after exposure to this nanomaterial was studied by means of fluorescence microscopy. The proton relaxation times as a function of dialysis time and functionalization were measured at 1.5 T. A capping procedure introducing stabilizing properties was designed and verified, and the dialysis effects were evaluated. A higher proton relaxivity was obtained for as-synthesized diethylene glycol (DEG)-Gd(2)O(3) nanoparticles compared to commercial Gd-DTPA. A slight decrease of the relaxivity for as-synthesized DEG-Gd(2)O(3) nanoparticles as a function of dialysis time was observed. The results for functionalized nanoparticles showed a considerable relaxivity increase for particles dialyzed extensively with r(1) and r(2) values approximately 4 times the corresponding values for Gd-DTPA. The microscopy study showed that PEGylated nanoparticles do not activate neutrophils in contrast to uncapped Gd(2)O(3). Finally, the nanoparticles are equipped with Rhodamine to show that our PEGylated nanoparticles are available for further coupling chemistry, and thus prepared for targeting purposes. The long term goal is to design a powerful, directed contrast agent for MRI examinations with specific targeting possibilities and with properties inducing local contrast, that is, an extremely high MR signal at the cellular and molecular level.


Contrast Media & Molecular Imaging | 2008

Positive MRI Enhancement in THP-1 Cells with Gd2O3 Nanoparticles

Anna Klasson; Maria Ahrén; Eva Hellqvist; Fredrik Söderlind; Anders Rosén; Per-Olov Käll; Kajsa Uvdal; Maria Engström

There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s(-1) mm(-1) for cell culture medium. The r2 was 17.4 and 12.9 s(-1) mm(-1), respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (p(r1) = 0.36), but r2 was significantly different for the two different series (p(r2) = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells.


Journal of Nanoparticle Research | 2012

A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study

Maria Ahrén; Linnéa Selegård; Fredrik Söderlind; Joanna Kauczor; Patrick Norman; Per-Olov Käll; Kajsa Uvdal

Chelated gadolinium ions, e.g., Gd-DTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4–5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r1 and r2 values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.


ACS Applied Materials & Interfaces | 2010

Biotinylation of ZnO nanoparticles and thin films: a two-step surface functionalization study.

Linnéa Selegård; Volodymyr Khranovskyy; Fredrik Söderlind; Cecilia Vahlberg; Maria Ahrén; Per-Olov Käll; Rositsa Yakimova; Kajsa Uvdal

This study reports ZnO nanoparticles and thin film surface modification using a two-step functionalization strategy. A small silane molecule was used to build up a stabilizing layer and for conjugation of biotin (vitamin B7), as a specific tag. Biotin was chosen because it is a well-studied bioactive molecule with high affinity for avidin. ZnO nanoparticles were synthesized by electrochemical deposition under oxidizing condition, and ZnO films were prepared by plasma-enhanced metal-organic chemical vapor deposition. Both ZnO nanoparticles and ZnO thin films were surface modified by forming a (3-mercaptopropyl)trimethoxysilane (MPTS) layer followed by attachment of a biotin derivate. Iodoacetyl-PEG2-biotin molecule was coupled to the thiol unit in MPTS through a substitution reaction. Powder X-ray diffraction, transmission electron microscopy, X-ray photoemission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy were used to investigate the as-synthesized and functionalized ZnO materials. The measurements showed highly crystalline materials in both cases with a ZnO nanoparticle diameter of about 5 nm and a grain size of about 45 nm for the as-grown ZnO thin films. The surface modification process resulted in coupling of silanes and biotin to both the ZnO nanoparticles and ZnO thin films. The two-step functionalization strategy has a high potential for specific targeting in bioimaging probes and for recognition studies in biosensing applications.


Langmuir | 2013

Tuning the shape of mesoporous silica particles by alterations in parameter space : from rods to platelets

Emma M. Björk; Fredrik Söderlind; Magnus Odén

The knowledge of how to control the pore size and morphology of separated mesoporous silica particles is crucial for optimizing their performance in applications, such as molecular sieves and drug delivery systems. In this work, we have systematically studied the effects of various synthesis parameters to gain a deeper understanding of how particle morphologies can be altered. It was found that the morphology for isolated particles of SBA-15 type, with unusually short and wide pores, could be altered from rods to platelets by variations in the NH4F concentration. The pore length is nearly constant (~300 nm) for the different morphologies, but the particle width is increasing from 200 nm to >3 μm when decreasing the amount of NH4F, and the pore size can be tuned between 10 and 13 nm. Furthermore, other synthesis parameters such as heptane concentration, pH, silica precursor, and additions of ions have also been studied. The trend regarding particle width is independent of heptane concentration, at the same time as heptane increases the particle length up to a plateau value of ~500 nm. In all, parameters controlling particle width, length, and pore size have been separated in order to evaluate their function in the particle formation. Additionally, it was found that the formation time of the particles is strongly affected by the fluoride ion concentration, and a mechanism for particle formation for this system, where micelles transform from a foam, to multilamellar vesicles, and finally to cylindrical micelles, is suggested.


Chemistry: A European Journal | 2013

Highly Water‐Dispersible Surface‐Modified Gd2O3 Nanoparticles for Potential Dual‐Modal Bioimaging

Zhangjun Hu; Maria Ahrén; Linnéa Selegård; Caroline Skoglund; Fredrik Söderlind; Maria Engström; Xuanjun Zhang; Kajsa Uvdal

Water-dispersible and luminescent gadolinium oxide (GO) nanoparticles (NPs) were designed and synthesized for potential dual-modal biological imaging. They were obtained by capping gadolinium oxide nanoparticles with a fluorescent glycol-based conjugated carboxylate (HL). The obtained nanoparticles (GO-L) show long-term colloidal stability and intense blue fluorescence. In addition, L can sensitize the luminescence of europium(III) through the so-called antenna effect. Thus, to extend the spectral ranges of emission, europium was introduced into L-modified gadolinium oxide nanoparticles. The obtained EuIII-doped particles (Eu:GO-L) can provide visible red emission, which is more intensive than that without L capping. The average diameter of the monodisperse modified oxide cores is about 4 nm. The average hydrodynamic diameter of the L-modified nanoparticles was estimated to be about 13 nm. The nanoparticles show effective longitudinal water proton relaxivity. The relaxivity values obtained for GO-L and Eu:GO-L were r1=6.4 and 6.3 s−1 mM−1 with r2/r1 ratios close to unity at 1.4 T. Longitudinal proton relaxivities of these nanoparticles are higher than those of positive contrast agents based on gadolinium complexes such as Gd-DOTA, which are commonly used for clinical magnetic resonance imaging. Moreover, these particles are suitable for cellular imaging and show good biocompatibility.


Polyhedron | 2001

Synthesis, structure determination and X-ray photoelectron spectroscopy characterisation of a novel polymeric silver(I) nicotinic acid complex, H[Ag(py-3-CO2)2]

Per-Olov Käll; Jekabs Grins; Mats Fahlman; Fredrik Söderlind

Polymeric inorganic or organometallic coordination compounds represent an interesting class of materials where novel (combinations of) electrical, optical, magnetic, catalytic, or other properties ...


Journal of Colloid and Interface Science | 2014

Single-pot synthesis of ordered mesoporous silica films with unique controllable morphology

Emma M. Björk; Fredrik Söderlind; Magnus Odén

Mesoporous silica films consisting of a monolayer of separated SBA-15 particles with unusually wide and short pores grown on silicon wafers have been fabricated in a simple single-pot-synthesis, and the formation of the films has been studied. A recipe for synthesizing mesoporous silica rods with the addition of heptane and NH4F at low temperature was used and substrates were added to the synthesis solution during the reaction. The films are ~90 nm thick, have a pore size of 10.7-13.9 nm depending on the hydrothermal treatment time and temperature, and a pore length of 200-400 nm. All pores are parallel to the substrate, open, and easy to access, making them suitable for applications such as catalyst hosts and gas separation. The growth of the films is closely correlated to the evolution of the mesoporous silica particles. Here, we have studied the time for adding substrates to the synthesis solution, the evolution of the films with time during formation, and the effect of hydrothermal treatment. It was found that the substrates should be added within 30-60s after turning off the stirring and the films are formed within 10 min after addition to the synthesis solution. The study has yielded a new route for synthesizing mesoporous silica films with a unique morphology.


Proceedings of SPIE, the International Society for Optical Engineering | 2009

New transducer material concepts for biosensors and surface functionalization

Anita Lloyd Spetz; Ruth Pearce; Linnea Hedin; Volodymyr Khranovskyy; Fredrik Söderlind; Per-Olov Käll; Rositza Yakimova; Kajsa Uvdal

Wide bandgap materials like SiC, ZnO, AlN form a strong platform as transducers for biosensors realized as e.g. ISFET (ion selective field effect transistor) devices or resonators. We have taken two main steps towards a multifunctional biosensor transducer. First we have successfully functionalized ZnO and SiC surfaces with e.g. APTES. For example ZnO is interesting since it may be functionalized with biomolecules without any oxidation of the surface and several sensing principles are possible. Second, ISFET devises with a porous metal gate as a semi-reference electrode are being developed. Nitric oxide, NO, is a gas which participates in the metabolism. Resistivity changes in Ga doped ZnO was demonstrated as promising for NO sensing also in humid atmosphere, in order to simulate breath.

Collaboration


Dive into the Fredrik Söderlind's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge