Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Ahrén is active.

Publication


Featured researches published by Maria Ahrén.


Langmuir | 2010

Synthesis and Characterization of PEGylated Gd2O3 Nanoparticles for MRI Contrast Enhancement

Maria Ahrén; Linnéa Selegård; Anna Klasson; Fredrik Söderlind; Natalia Abrikossova; Caroline Skoglund; Torbjörn Bengtsson; Maria Engström; Per-Olov Käll; Kajsa Uvdal

Recently, much attention has been given to the development of biofunctionalized nanoparticles with magnetic properties for novel biomedical imaging. Guided, smart, targeting nanoparticulate magnetic resonance imaging (MRI) contrast agents inducing high MRI signal will be valuable tools for future tissue specific imaging and investigation of molecular and cellular events. In this study, we report a new design of functionalized ultrasmall rare earth based nanoparticles to be used as a positive contrast agent in MRI. The relaxivity is compared to commercially available Gd based chelates. The synthesis, PEGylation, and dialysis of small (3-5 nm) gadolinium oxide (DEG-Gd(2)O(3)) nanoparticles are presented. The chemical and physical properties of the nanomaterial were investigated with Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. Neutrophil activation after exposure to this nanomaterial was studied by means of fluorescence microscopy. The proton relaxation times as a function of dialysis time and functionalization were measured at 1.5 T. A capping procedure introducing stabilizing properties was designed and verified, and the dialysis effects were evaluated. A higher proton relaxivity was obtained for as-synthesized diethylene glycol (DEG)-Gd(2)O(3) nanoparticles compared to commercial Gd-DTPA. A slight decrease of the relaxivity for as-synthesized DEG-Gd(2)O(3) nanoparticles as a function of dialysis time was observed. The results for functionalized nanoparticles showed a considerable relaxivity increase for particles dialyzed extensively with r(1) and r(2) values approximately 4 times the corresponding values for Gd-DTPA. The microscopy study showed that PEGylated nanoparticles do not activate neutrophils in contrast to uncapped Gd(2)O(3). Finally, the nanoparticles are equipped with Rhodamine to show that our PEGylated nanoparticles are available for further coupling chemistry, and thus prepared for targeting purposes. The long term goal is to design a powerful, directed contrast agent for MRI examinations with specific targeting possibilities and with properties inducing local contrast, that is, an extremely high MR signal at the cellular and molecular level.


Journal of the American Chemical Society | 2010

Nanoscale Ln(III)-Carboxylate Coordination Polymers (Ln = Gd, Eu, Yb): Temperature-Controlled Guest Encapsulation and Light Harvesting

Xuanjun Zhang; Mohamed A. Ballem; Maria Ahrén; Anke Suska; Peder Bergman; Kajsa Uvdal

We report the self-assembly of stable nanoscale coordination polymers (NCPs), which exhibit temperature-controlled guest encapsulation and release, as well as an efficient light-harvesting property. NCPs are obtained by coordination-directed organization of pi-conjugated dicarboxylate (L1) and lanthanide metal ions Gd(III), Eu(III), and Yb(III) in a DMF system. Guest molecules trans-4-styryl-1-methylpyridiniumiodide (D1) and methylene blue (D2) can be encapsulated into NCPs, and the loading amounts can be controlled by changing reaction temperatures. Small angle X-ray diffraction (SAXRD) results reveal that the self-assembled discus-like NCPs exhibit long-range ordered structures, which remain unchanged after guest encapsulations. Experimental results reveal that the negatively charged local environment around the metal connector is the driving force for the encapsulation of cationic guests. The D1 molecules encapsulated in NCPs at 140 degrees C can be released gradually at room temperature in DMF. Guest-loaded NCPs exhibit efficient light harvesting with energy transfer from the framework to the guest D1 molecule, which is studied by photoluminescence and fluorescence lifetime decays. This coordination-directed encapsulation approach is general and should be extended to the fabrication of a wide range of multifunctional nanomaterials.


Contrast Media & Molecular Imaging | 2008

Positive MRI Enhancement in THP-1 Cells with Gd2O3 Nanoparticles

Anna Klasson; Maria Ahrén; Eva Hellqvist; Fredrik Söderlind; Anders Rosén; Per-Olov Käll; Kajsa Uvdal; Maria Engström

There is a demand for more efficient and tissue-specific MRI contrast agents and recent developments involve the design of substances useful as molecular markers and magnetic tracers. In this study, nanoparticles of gadolinium oxide (Gd2O3) have been investigated for cell labeling and capacity to generate a positive contrast. THP-1, a monocytic cell line that is phagocytic, was used and results were compared with relaxivity of particles in cell culture medium (RPMI 1640). The results showed that Gd2O3-labeled cells have shorter T1 and T2 relaxation times compared with untreated cells. A prominent difference in signal intensity was observed, indicating that Gd2O3 nanoparticles can be used as a positive contrast agent for cell labeling. The r1 for cell samples was 4.1 and 3.6 s(-1) mm(-1) for cell culture medium. The r2 was 17.4 and 12.9 s(-1) mm(-1), respectively. For r1, there was no significant difference in relaxivity between particles in cells compared to particles in cell culture medium, (p(r1) = 0.36), but r2 was significantly different for the two different series (p(r2) = 0.02). Viability results indicate that THP-1 cells endure treatment with Gd2O3 nanoparticles for an extended period of time and it is therefore concluded that results in this study are based on viable cells.


Journal of Nanoparticle Research | 2012

A simple polyol-free synthesis route to Gd2O3 nanoparticles for MRI applications: an experimental and theoretical study

Maria Ahrén; Linnéa Selegård; Fredrik Söderlind; Joanna Kauczor; Patrick Norman; Per-Olov Käll; Kajsa Uvdal

Chelated gadolinium ions, e.g., Gd-DTPA, are today used clinically as contrast agents for magnetic resonance imaging (MRI). An attractive alternative contrast agent is composed of gadolinium oxide nanoparticles as they have shown to provide enhanced contrast and, in principle, more straightforward molecular capping possibilities. In this study, we report a new, simple, and polyol-free way of synthesizing 4–5-nm-sized Gd2O3 nanoparticles at room temperature, with high stability and water solubility. The nanoparticles induce high-proton relaxivity compared to Gd-DTPA showing r1 and r2 values almost as high as those for free Gd3+ ions in water. The Gd2O3 nanoparticles are capped with acetate and carbonate groups, as shown with infrared spectroscopy, near-edge X-ray absorption spectroscopy, X-ray photoelectron spectroscopy and combined thermogravimetric and mass spectroscopy analysis. Interpretation of infrared spectroscopy data is corroborated by extensive quantum chemical calculations. This nanomaterial is easily prepared and has promising properties to function as a core in a future contrast agent for MRI.


International Journal of Nanomedicine | 2011

Gd2O3 nanoparticles in hematopoietic cells for MRI contrast enhancement

Anna Hedlund; Maria Ahrén; Håkan Gustafsson; Natalia Abrikossova; Marcel Warntjes; Jan-Ingvar Jönsson; Kajsa Uvdal; Maria Engström

As the utility of magnetic resonance imaging (MRI) broadens, the importance of having specific and efficient contrast agents increases and in recent time there has been a huge development in the fields of molecular imaging and intracellular markers. Previous studies have shown that gadolinium oxide (Gd2O3) nanoparticles generate higher relaxivity than currently available Gd chelates: In addition, the Gd2O3 nanoparticles have promising properties for MRI cell tracking. The aim of the present work was to study cell labeling with Gd2O3 nanoparticles in hematopoietic cells and to improve techniques for monitoring hematopoietic stem cell migration by MRI. Particle uptake was studied in two cell lines: the hematopoietic progenitor cell line Ba/F3 and the monocytic cell line THP-1. Cells were incubated with Gd2O3 nanoparticles and it was investigated whether the transfection agent protamine sulfate increased the particle uptake. Treated cells were examined by electron microscopy and MRI, and analyzed for particle content by inductively coupled plasma sector field mass spectrometry. Results showed that particles were intracellular, however, sparsely in Ba/F3. The relaxation times were shortened with increasing particle concentration. Relaxivities, r1 and r2 at 1.5 T and 21°C, for Gd2O3 nanoparticles in different cell samples were 3.6–5.3 s−1 mM−1 and 9.6–17.2 s−1 mM−1, respectively. Protamine sulfate treatment increased the uptake in both Ba/F3 cells and THP-1 cells. However, the increased uptake did not increase the relaxation rate for THP-1 as for Ba/F3, probably due to aggregation and/or saturation effects. Viability of treated cells was not significantly decreased and thus, it was concluded that the use of Gd2O3 nanoparticles is suitable for this type of cell labeling by means of detecting and monitoring hematopoietic cells. In conclusion, Gd2O3 nanoparticles are a promising material to achieve positive intracellular MRI contrast; however, further particle development needs to be performed.


Nanotechnology | 2012

Effects of gadolinium oxide nanoparticles on the oxidative burst from human neutrophil granulocytes

Natalia Abrikossova; Caroline Skoglund; Maria Ahrén; Torbjörn Bengtsson; Kajsa Uvdal

We have previously shown that gadolinium oxide (Gd(2)O(3)) nanoparticles are promising candidates to be used as contrast agents in magnetic resonance (MR) imaging applications. In this study, these nanoparticles were investigated in a cellular system, as possible probes for visualization and targeting intended for bioimaging applications. We evaluated the impact of the presence of Gd(2)O(3) nanoparticles on the production of reactive oxygen species (ROS) from human neutrophils, by means of luminol-dependent chemiluminescence. Three sets of Gd(2)O(3) nanoparticles were studied, i.e. as synthesized, dialyzed and both PEG-functionalized and dialyzed Gd(2)O(3) nanoparticles. In addition, neutrophil morphology was evaluated by fluorescent staining of the actin cytoskeleton and fluorescence microscopy. We show that surface modification of these nanoparticles with polyethylene glycol (PEG) is essential in order to increase their biocompatibility. We observed that the as synthesized nanoparticles markedly decreased the ROS production from neutrophils challenged with prey (opsonized yeast particles) compared to controls without nanoparticles. After functionalization and dialysis, more moderate inhibitory effects were observed at a corresponding concentration of gadolinium. At lower gadolinium concentration the response was similar to that of the control cells. We suggest that the diethylene glycol (DEG) present in the as synthesized nanoparticle preparation is responsible for the inhibitory effects on the neutrophil oxidative burst. Indeed, in the present study we also show that even a low concentration of DEG, 0.3%, severely inhibits neutrophil function. In summary, the low cellular response upon PEG-functionalized Gd(2)O(3) nanoparticle exposure indicates that these nanoparticles are promising candidates for MR-imaging purposes.


ACS Applied Materials & Interfaces | 2010

Biotinylation of ZnO nanoparticles and thin films: a two-step surface functionalization study.

Linnéa Selegård; Volodymyr Khranovskyy; Fredrik Söderlind; Cecilia Vahlberg; Maria Ahrén; Per-Olov Käll; Rositsa Yakimova; Kajsa Uvdal

This study reports ZnO nanoparticles and thin film surface modification using a two-step functionalization strategy. A small silane molecule was used to build up a stabilizing layer and for conjugation of biotin (vitamin B7), as a specific tag. Biotin was chosen because it is a well-studied bioactive molecule with high affinity for avidin. ZnO nanoparticles were synthesized by electrochemical deposition under oxidizing condition, and ZnO films were prepared by plasma-enhanced metal-organic chemical vapor deposition. Both ZnO nanoparticles and ZnO thin films were surface modified by forming a (3-mercaptopropyl)trimethoxysilane (MPTS) layer followed by attachment of a biotin derivate. Iodoacetyl-PEG2-biotin molecule was coupled to the thiol unit in MPTS through a substitution reaction. Powder X-ray diffraction, transmission electron microscopy, X-ray photoemission electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure spectroscopy were used to investigate the as-synthesized and functionalized ZnO materials. The measurements showed highly crystalline materials in both cases with a ZnO nanoparticle diameter of about 5 nm and a grain size of about 45 nm for the as-grown ZnO thin films. The surface modification process resulted in coupling of silanes and biotin to both the ZnO nanoparticles and ZnO thin films. The two-step functionalization strategy has a high potential for specific targeting in bioimaging probes and for recognition studies in biosensing applications.


Chemistry: A European Journal | 2013

Highly Water‐Dispersible Surface‐Modified Gd2O3 Nanoparticles for Potential Dual‐Modal Bioimaging

Zhangjun Hu; Maria Ahrén; Linnéa Selegård; Caroline Skoglund; Fredrik Söderlind; Maria Engström; Xuanjun Zhang; Kajsa Uvdal

Water-dispersible and luminescent gadolinium oxide (GO) nanoparticles (NPs) were designed and synthesized for potential dual-modal biological imaging. They were obtained by capping gadolinium oxide nanoparticles with a fluorescent glycol-based conjugated carboxylate (HL). The obtained nanoparticles (GO-L) show long-term colloidal stability and intense blue fluorescence. In addition, L can sensitize the luminescence of europium(III) through the so-called antenna effect. Thus, to extend the spectral ranges of emission, europium was introduced into L-modified gadolinium oxide nanoparticles. The obtained EuIII-doped particles (Eu:GO-L) can provide visible red emission, which is more intensive than that without L capping. The average diameter of the monodisperse modified oxide cores is about 4 nm. The average hydrodynamic diameter of the L-modified nanoparticles was estimated to be about 13 nm. The nanoparticles show effective longitudinal water proton relaxivity. The relaxivity values obtained for GO-L and Eu:GO-L were r1=6.4 and 6.3 s−1 mM−1 with r2/r1 ratios close to unity at 1.4 T. Longitudinal proton relaxivities of these nanoparticles are higher than those of positive contrast agents based on gadolinium complexes such as Gd-DOTA, which are commonly used for clinical magnetic resonance imaging. Moreover, these particles are suitable for cellular imaging and show good biocompatibility.


Archive | 2012

Two-Dimensional Gel Electrophoresis and Mass Spectrometry in Studies of Nanoparticle-Protein Interactions

Helen Karlsson; Stefan Ljunggren; Maria Ahrén; Bijar Ghafouri; Kajsa Uvdal; Mats Lindahl; Anders Ljungman

Over the years a number of epidemiological studies have shown that PM from combustion sources such as motor vehicles contributes to respiratory and cardiovascular morbidity and mortality.Especially so do the ultra-fine particles (UFPs) with a diameter less than 0.1 micrometer.UFPs from combustion engines are capable to translocate over the alveolar–capillary barrier. When nano-sized PM (nanoparticles, NP), which are small enough to enter the blood stream, do so they are likely to interact with plasma proteins and this protein-NP interaction will probably affect the fate of and the effects caused by the NPs in the human body. Here, by using a proteomic approach, we present results showing that several proteins indeed are associated to NPs that have in vitro been introduced to human blood plasma.


Archive | 2013

Metal Oxide Nanoparticles for Contrast Enhancement in Magnetic Resonance Imaging : Synthesis, Functionalization and Characterization

Maria Ahrén

This thesis work focuses on the design and production of nanoparticle based contrast agents for signal enhancement in magnetic resonance imaging (MRI). Three different synthesis routes are explored ...

Collaboration


Dive into the Maria Ahrén's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge