Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fredrik T. Rantakyrö is active.

Publication


Featured researches published by Fredrik T. Rantakyrö.


Astronomy and Astrophysics | 2007

AMBER, the near-infrared spectro-interferometric three-telescope VLTI instrument

Romain G. Petrov; F. Malbet; G. Weigelt; P. Antonelli; Udo Beckmann; Y. Bresson; A. Chelli; M. Dugué; G. Duvert; S. Gennari; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; F. Millour; K. Perraut; P. Puget; Fredrik T. Rantakyrö; Sylvie Robbe-Dubois; A. Roussel; Piero Salinari; E. Tatulli; G. Zins; M. Accardo; B. Acke; K. Agabi; E. Altariba; B. Arezki; E. Aristidi

Context: Optical long-baseline interferometry is moving a crucial step forward with the advent of general-user scientific instruments that equip large aperture and hectometric baseline facilities, such as the Very Large Telescope Interferometer (VLTI). Aims: AMBER is one of the VLTI instruments that combines up to three beams with low, moderate and high spectral resolutions in order to provide milli-arcsecond spatial resolution for compact astrophysical sources in the near-infrared wavelength domain. Its main specifications are based on three key programs on young stellar objects, active galactic nuclei central regions, masses, and spectra of hot extra-solar planets. Methods: These key science goals led to scientific specifications, which were used to propose and then validate the instrument concept. AMBER uses single-mode fibers to filter the entrance signal and to reach highly accurate, multiaxial three-beam combination, yielding three baselines and a closure phase, three spectral dispersive elements, and specific self-calibration procedures. Results: The AMBER measurements yield spectrally dispersed calibrated visibilities, color-differential complex visibilities, and a closure phase allows astronomers to contemplate rudimentary imaging and highly accurate visibility and phase differential measurements. AMBER was installed in 2004 at the Paranal Observatory. We describe here the present implementation of the instrument in the configuration with which the astronomical community can access it. Conclusions: .After two years of commissioning tests and preliminary observations, AMBER has produced its first refereed publications, allowing assessment of its scientific potential.


Proceedings of the National Academy of Sciences of the United States of America | 2014

First light of the Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; Patrick Ingraham; Quinn Konopacky; Christian Marois; Marshall D. Perrin; Lisa A. Poyneer; Brian J. Bauman; Travis Barman; Adam Burrows; Andrew Cardwell; Jeffrey K. Chilcote; Robert J. De Rosa; Daren Dillon; René Doyon; Jennifer Dunn; Darren Erikson; Michael P. Fitzgerald; Donald Gavel; Stephen J. Goodsell; Markus Hartung; Pascale Hibon; Paul Kalas; James E. Larkin; Jérôme Maire; Franck Marchis; Mark S. Marley; James McBride; Max Millar-Blanchaer; Katie M. Morzinski

Bruce Macintosh a , James R. Graham , Patrick Ingraham b , Quinn Konopacky , Christian Marois , Marshall Perrin f , Lisa Poyneer a , Brian Bauman a , Travis Barman , Adam Burrows , Andrew Cardwell , Jeffrey Chilcote j , Robert J. De Rosa , Daren Dillon , Rene Doyon , Jennifer Dunn e , Darren Erikson e , Michael Fitzgerald j , Donald Gavel l , Stephen Goodsell i , Markus Hartung i , Pascale Hibon i , Paul G. Kalas c , James Larkin j , Jerome Maire d , Franck Marchis , Mark Marley , James McBride c , Max Millar-Blanchaer d , Katie Morzinski , Andew Norton l B. R. Oppenheimer , Dave Palmer a , Jennifer Patience k , Laurent Pueyo f , Fredrik Rantakyro i , Naru Sadakuni i , Leslie Saddlemyer e , Dmitry Savransky , Andrew Serio i , Remi Soummer f Anand Sivaramakrishnan f , q Inseok Song , Sandrine Thomas , J. Kent Wallace , Sloane Wiktorowicz l , and Schuyler Wolff vSignificance Direct detection—spatially resolving the light of a planet from the light of its parent star—is an important technique for characterizing exoplanets. It allows observations of giant exoplanets in locations like those in our solar system, inaccessible by other methods. The Gemini Planet Imager (GPI) is a new instrument for the Gemini South telescope. Designed and optimized only for high-contrast imaging, it incorporates advanced adaptive optics, diffraction control, a near-infrared spectrograph, and an imaging polarimeter. During first-light scientific observations in November 2013, GPI achieved contrast performance that is an order of magnitude better than conventional adaptive optics imagers. The Gemini Planet Imager is a dedicated facility for directly imaging and spectroscopically characterizing extrasolar planets. It combines a very high-order adaptive optics system, a diffraction-suppressing coronagraph, and an integral field spectrograph with low spectral resolution but high spatial resolution. Every aspect of the Gemini Planet Imager has been tuned for maximum sensitivity to faint planets near bright stars. During first-light observations, we achieved an estimated H band Strehl ratio of 0.89 and a 5-σ contrast of 106 at 0.75 arcseconds and 105 at 0.35 arcseconds. Observations of Beta Pictoris clearly detect the planet, Beta Pictoris b, in a single 60-s exposure with minimal postprocessing. Beta Pictoris b is observed at a separation of 434 ± 6 milliarcseconds (mas) and position angle 211.8 ± 0.5°. Fitting the Keplerian orbit of Beta Pic b using the new position together with previous astrometry gives a factor of 3 improvement in most parameters over previous solutions. The planet orbits at a semimajor axis of 9.0−0.4+0.8 AU near the 3:2 resonance with the previously known 6-AU asteroidal belt and is aligned with the inner warped disk. The observations give a 4% probability of a transit of the planet in late 2017.


Astronomy and Astrophysics | 2007

Interferometric data reduction with AMBER/VLTI. Principle, estimators, and illustration

E. Tatulli; F. Millour; A. Chelli; G. Duvert; B. Acke; O. Hernandez Utrera; Karl-Heinz Hofmann; Stefan Kraus; Fabien Malbet; P. Mège; Romain G. Petrov; Martin Vannier; G. Zins; P. Antonelli; Udo Beckmann; Y. Bresson; M. Dugué; S. Gennari; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; K. Perraut; P. Puget; Fredrik T. Rantakyrö; Sylvie Robbe-Dubois; A. Roussel; G. Weigelt; M. Accardo

Aims. In this paper, we present an innovative data reduction method for single-mode interferometry. It has been specifically developed for the AMBER instrument, the three-beam combiner of the Very Large Telescope Interferometer, but it can be derived for any single-mode interferometer. Methods. The algorithm is based on a direct modelling of the fringes in the detector plane. As such, it requires a preliminary calibration of the instrument in order to obtain the calibration matrix that builds the linear relationship between the interferogram and the interferometric observable, which is the complex visibility. Once the calibration procedure has been performed, the signal processing appears to be a classical least-square determination of a linear inverse problem. From the estimated complex visibility, we derive the squared visibility, the closure phase, and the spectral differential phase. Results. The data reduction procedures have been gathered into the so-called amdlib software, now available for the community, and are presented in this paper. Furthermore, each step in this original algorithm is illustrated and discussed from various on-sky observations conducted with the VLTI, with a focus on the control of the data quality and the effective execution of the data reduction procedures. We point out the present limited performances of the instrument due to VLTI instrumental vibrations which are difficult to calibrate.


Science | 2015

Discovery and spectroscopy of the young jovian planet 51 Eri b with the Gemini Planet Imager

Bruce A. Macintosh; James R. Graham; Travis Barman; R. J. De Rosa; Quinn Konopacky; Mark S. Marley; Christian Marois; Eric L. Nielsen; Laurent Pueyo; Abhijith Rajan; Julien Rameau; Didier Saumon; Jason J. Wang; Jenny Patience; Mark Ammons; Pauline Arriaga; Étienne Artigau; Steven V. W. Beckwith; J. Brewster; Sebastian Bruzzone; Joanna Bulger; B. Burningham; Adam Burrows; C. H. Chen; Eugene Chiang; Jeffrey K. Chilcote; Rebekah I. Dawson; Ruobing Dong; René Doyon; Zachary H. Draper

An exoplanet extracted from the bright Direct imaging of Jupiter-like exoplanets around young stars provides a glimpse into how our solar system formed. The brightness of young stars requires the use of next-generation devices such as the Gemini Planet Imager (GPI). Using the GPI, Macintosh et al. discovered a Jupiter-like planet orbiting a young star, 51 Eridani (see the Perspective by Mawet). The planet, 51 Eri b, has a methane signature and is probably the smallest exoplanet that has been directly imaged. These findings open the door to understanding solar system origins and herald the dawn of a new era in next-generation planetary imaging. Science, this issue p. 64; see also p. 39 The Gemini Planet Imager detects a Jupiter-like exoplanet orbiting the young star 51 Eridani. [Also see Perspective by Mawet] Directly detecting thermal emission from young extrasolar planets allows measurement of their atmospheric compositions and luminosities, which are influenced by their formation mechanisms. Using the Gemini Planet Imager, we discovered a planet orbiting the ~20-million-year-old star 51 Eridani at a projected separation of 13 astronomical units. Near-infrared observations show a spectrum with strong methane and water-vapor absorption. Modeling of the spectra and photometry yields a luminosity (normalized by the luminosity of the Sun) of 1.6 to 4.0 × 10−6 and an effective temperature of 600 to 750 kelvin. For this age and luminosity, “hot-start” formation models indicate a mass twice that of Jupiter. This planet also has a sufficiently low luminosity to be consistent with the “cold-start” core-accretion process that may have formed Jupiter.


Astronomy and Astrophysics | 2007

Disk and wind interaction in the young stellar object MWC 297 spatially resolved with VLTI/AMBER

Fabien Malbet; M. Benisty; W. J. de Wit; S. Kraus; A. Meilland; F. Millour; E. Tatulli; J.-P. Berger; O. Chesneau; Karl-Heinz Hofmann; Andrea Isella; A. Natta; Romain G. Petrov; Thomas Preibisch; P. Stee; L. Testi; G. Weigelt; P. Antonelli; Udo Beckmann; Y. Bresson; A. Chelli; G. Duvert; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; K. Perraut; Sylvie Robbe-Dubois; A. Roussel

The young stellar object MWC 297 is an embedded B1.5Ve star exhibiting strong hydrogen emission lines and a strong near-infrared continuum excess. This object has been observed with the VLT interferometer equipped with the AMBER instrument during its first commissioning run. VLTI/AMBER is currently the only near infrared interferometer which can observe spectrally dispersed visibilities. MWC 297 has been spatially resolved in the continuum with a visibility of


Astronomy and Astrophysics | 2007

Constraining the wind launching region in Herbig Ae stars: AMBER/VLTI spectroscopy of HD 104237

E. Tatulli; Andrea Isella; A. Natta; L. Testi; A. Marconi; Fabien Malbet; P. Stee; Romain G. Petrov; F. Millour; A. Chelli; G. Duvert; P. Antonelli; Udo Beckmann; Y. Bresson; M. Dugué; S. Gennari; L. Glück; P. Kern; S. Lagarde; E. Le Coarer; Franco Lisi; K. Perraut; P. Puget; Fredrik T. Rantakyrö; Sylvie Robbe-Dubois; A. Roussel; G. Weigelt; G. Zins; M. Accardo; B. Acke

0.50^{+0.08}_{-0.10}


Astronomy and Astrophysics | 2007

Direct constraint on the distance of Gamma-2 Velorum from AMBER/VLTI observations

F. Millour; Romain G. Petrov; O. Chesneau; D. Bonneau; Luc Dessart; Clémentine Béchet; Isabelle Tallon-Bosc; Michel Tallon; Éric Thiébaut; F. Vakili; Fabien Malbet; D. Mourard; G. Zins; A. Roussel; Sylvie Robbe-Dubois; P. Puget; K. Perraut; Franco Lisi; E. Le Coarer; S. Lagarde; P. Kern; L. Glück; G. Duvert; A. Chelli; Y. Bresson; Udo Beckmann; P. Antonelli; G. Weigelt; N. Ventura; Martin Vannier

as well as in the Brgamma emission line where the visibility decrease to a lower value of


Proceedings of SPIE | 2014

Gemini Planet Imager observational calibrations I: Overview of the GPI data reduction pipeline

Marshall D. Perrin; Jérôme Maire; Patrick Ingraham; Dmitry Savransky; Max Millar-Blanchaer; Schuyler Wolff; Jean Baptiste Ruffio; Jason J. Wang; Zachary H. Draper; Naru Sadakuni; Christian Marois; Abhijith Rajan; Michael P. Fitzgerald; Bruce A. Macintosh; James R. Graham; René Doyon; James E. Larkin; Jeffrey K. Chilcote; Stephen J. Goodsell; David Palmer; Kathleen Labrie; Mathilde Beaulieu; Robert J. De Rosa; Alexandra Z. Greenbaum; Markus Hartung; Pascale Hibon; Quinn Konopacky; David Lafrenière; Jean-Francois Lavigne; Franck Marchis

0.33\pm0.06


Earth Moon and Planets | 2002

The 1995-2002 Long-Term Monitoring of Comet C/1995 O1 (HALE-BOPP) at Radio Wavelength

N. Biver; Dominique Bockelee-Morvan; P. Colom; Jacques Crovisier; Florence Henry; E. Lellouch; Anders Winnberg; L. E. B. Johansson; M. Gunnarsson; H. Rickman; Fredrik T. Rantakyrö; J. K. Davies; William R. F. Dent; Gabriel Paubert; R. Moreno; J. Wink; Didier Despois; Dominic J. Benford; Matt Gardner; Dariusz C. Lis; David M. Mehringer; T. G. Phillips; H. Rauer

. This change in the visibility with the wavelength can be interpreted by the presence of an optically thick disk responsible for the visibility in the continuum and of a stellar wind traced by the Brgamma emission line and whose apparent size is 40% larger. We validate this interpretation by building a model of the stellar environment that combines a geometrically thin, optically thick accretion disk model consisting of gas and dust, and a latitude-dependent stellar wind outflowing above the disk surface. The continuum emission and visibilities obtained from this model are fully consistent with the interferometric AMBER data. They agree also with existing optical, near-infrared spectra and other broad-band near-infrared interferometric visibilities. We also reproduce the shape of the visibilities in the Brgamma line as well as the profile of this line obtained at an higher spectral resolution with the VLT/ISAAC spectrograph, and those of the Halpha and Hbeta lines. The disk and wind models yield a consistent inclination of the system of approximately 20 degrees. A picture emerges in which MWC 297 is surrounded by an equatorial flat disk that is possibly still accreting and an outflowing wind which has a much higher velocity in the polar region than at the equator. The VLTI/AMBER unique capability to measure spectral visibilities therefore allows us for the first time to compare the apparent geometry of a wind with the disk structure in a young stellar system.


The Astrophysical Journal | 2015

β PICTORIS' INNER DISK in POLARIZED LIGHT and NEW ORBITAL PARAMETERS for β PICTORIS b

Maxwell A. Millar-Blanchaer; James R. Graham; Laurent Pueyo; Paul Kalas; Rebekah I. Dawson; Jason J. Wang; Marshall D. Perrin; Dae Sik Moon; Bruce A. Macintosh; S. Mark Ammons; Travis Barman; Andrew Cardwell; C. H. Chen; Eugene Chiang; Jeffrey K. Chilcote; Tara Cotten; Robert J. De Rosa; Zachary H. Draper; Jennifer Dunn; Gaspard Duchene; Thomas M. Esposito; Michael P. Fitzgerald; Katherine B. Follette; Stephen J. Goodsell; Alexandra Z. Greenbaum; Markus Hartung; Pascale Hibon; Sasha Hinkley; Patrick Ingraham; Rebecca Jensen-Clem

This work has been partly supported by the MIUR COFIN grant 2003/027003-001 and 025227/2004 to the INAFOsservatorio Astrofisico di Arcetri. This project has benefited from funding from the French Centre National de la Recherche Scientifique (CNRS) through the Institut National des Sciences de l’Univers (INSU) and its Programmes Nationaux (ASHRA, PNPS). The authors from the French laboratories would like to thank the successive directors of the INSU/CNRS directors. C. Gil work was supported in part by the Fundac¸˜ao para a Ciˆencia e a Tecnologia through project POCTI/CTE-AST/55691/2004 from POCTI,with funds from the European program FEDER.

Collaboration


Dive into the Fredrik T. Rantakyrö's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pascale Hibon

European Southern Observatory

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

René Doyon

Université de Montréal

View shared research outputs
Researchain Logo
Decentralizing Knowledge