Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Freya Q. Schafer is active.

Publication


Featured researches published by Freya Q. Schafer.


Free Radical Biology and Medicine | 2001

Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple

Freya Q. Schafer; Garry R. Buettner

Redox state is a term used widely in the research field of free radicals and oxidative stress. Unfortunately, it is used as a general term referring to relative changes that are not well defined or quantitated. In this review we provide a definition for the redox environment of biological fluids, cell organelles, cells, or tissue. We illustrate how the reduction potential of various redox couples can be estimated with the Nernst equation and show how pH and the concentrations of the species comprising different redox couples influence the reduction potential. We discuss how the redox state of the glutathione disulfide-glutathione couple (GSSG/2GSH) can serve as an important indicator of redox environment. There are many redox couples in a cell that work together to maintain the redox environment; the GSSG/2GSH couple is the most abundant redox couple in a cell. Changes of the half-cell reduction potential (E(hc)) of the GSSG/2GSH couple appear to correlate with the biological status of the cell: proliferation E(hc) approximately -240 mV; differentiation E(hc) approximately -200 mV; or apoptosis E(hc) approximately -170 mV. These estimates can be used to more fully understand the redox biochemistry that results from oxidative stress. These are the first steps toward a new quantitative biology, which hopefully will provide a rationale and understanding of the cellular mechanisms associated with cell growth and development, signaling, and reductive or oxidative stress.


Oncogene | 2005

Manganese superoxide dismutase suppresses hypoxic induction of hypoxia-inducible factor-1|[alpha]| and vascular endothelial growth factor

Min Wang; Jeanie S Kirk; Sujatha Venkataraman; Frederick E. Domann; Hannah J. Zhang; Freya Q. Schafer; Shawn W. Flanagan; Christine J. Weydert; Douglas R. Spitz; Garry R. Buettner; Larry W. Oberley

Hypoxia-inducible factor-1 (HIF-1) is a transcription factor that governs cellular responses to reduced O2 availability by mediating crucial homeostatic processes. HIF-1 is composed of an HIF-1α subunit and an HIF-1β subunit. HIF-1α is degraded following enzyme-dependent hydroxylation of prolines of HIF-1α in the presence of molecular oxygen, Fe2+, α-ketoglutarate, and ascorbate. These cofactors contribute to the redox environment of cells. The antioxidant enzyme manganese superoxide dismutase (MnSOD) also modulates the cellular redox environment. Here we show that MnSOD suppressed hypoxic accumulation of HIF-1α protein in human breast carcinoma MCF-7 cells. This suppression was biphasic depending on MnSOD activity. At low levels of MnSOD activity, HIF-1α protein accumulated under hypoxic conditions. At moderate levels of MnSOD activity (two- to six-fold increase compared to parent cells), these accumulations were blocked. However, at higher levels of MnSOD activity (>6-fold increase), accumulation of HIF-1α protein was again observed. This biphasic modulation was observed under both 1 and 4% O2. Coexpression of mitochondrial hydrogen peroxide-removing proteins prevented the accumulation of HIF-1α protein in cells with high levels of MnSOD; this effect demonstrates that the restabilization of HIF-1α observed in high MnSOD overexpressors is probably due to hydrogen peroxide, most likely produced from MnSOD. Hypoxic induction of vascular endothelial growth factor (VEGF) protein was also suppressed by elevated MnSOD activity and its levels reflected HIF-1α protein levels. These observations demonstrated that HIF-1α accumulation and VEGF expression could be modulated by the antioxidant enzyme MnSOD.


Biological Chemistry | 2002

Comparing β-Carotene, Vitamin E and Nitric Oxide as Membrane Antioxidants

Freya Q. Schafer; Hong P. Wang; Eric E. Kelley; Kate L. Cueno; Sean M. Martin; Garry R. Buettner

Abstract Singlet oxygen initiates lipid peroxidation via a nonfree radical mechanism by reacting directly with unsaturated lipids to form lipid hydroperoxides (LOOHs). These LOOHs can initiate free radical chain reactions leading to membrane leakage and cell death. Here we compare the ability and mechanism by which three smallmolecule membrane antioxidants (βcarotene, αtocopherol and nitric oxide) inhibit lipid peroxidation in membranes. We demonstrate that βcarotene provides protection against singlet oxygenmediated lipid peroxidation, but does not slow free radicalmediated lipid peroxidation. α Tocopherol does not protect cells from singlet oxygen, but does inhibit free radical formation in cell membranes. Nitric oxide provides no direct protection against singlet oxygen exposure, but is an exceptional chainbreaking antioxidant as evident from its ability to blunt oxygen consumption during free radical mediated lipid peroxidation. These three smallmolecule antioxidants appear to have complementary mechanisms for the protection of cell membranes from detrimental oxidations.


Free Radical Biology and Medicine | 2001

PHOSPHOLIPID HYDROPEROXIDE GLUTATHIONE PEROXIDASE PROTECTS AGAINST SINGLET OXYGEN-INDUCED CELL DAMAGE OF PHOTODYNAMIC THERAPY

Hong P. Wang; Steven Y. Qian; Freya Q. Schafer; Frederick E. Domann; Larry W. Oberley; Garry R. Buettner

Phospholipid hydroperoxide glutathione peroxidase (PhGPx) is an important enzyme in the removal of lipid hydroperoxides (LOOHs) from cell membranes. Cancer treatments such as photodynamic therapy (PDT) induce lipid peroxidation in cells as a detrimental action. The photosensitizers used produce reactive oxygen species such as singlet oxygen ((1)O(2)). Because singlet oxygen introduces lipid hydroperoxides into cell membranes, we hypothesized that PhGPx would provide protection against the oxidative stress of singlet oxygen and therefore could interfere with cancer treatment. To test this hypothesis, human breast cancer cells (MCF-7) were stably transfected with PhGPx cDNA. Four clones with varying levels of PhGPx activity were isolated. The activities of other cellular antioxidant enzymes were not influenced by the overexpression of PhGPx. Cellular PhGPx activity had a remarkable inverse linear correlation to the removal of lipid hydroperoxides in living cells (r = -0.85), and correlated positively with cell survival after singlet oxygen exposure (r = 0.94). These data demonstrate that PhGPx provides significant protection against singlet oxygen-generated lipid peroxidation via removal of LOOH and suggest that LOOHs are major mediators in this cell injury process. Thus, PhGPx activity could contribute to the resistance of tumor cells to PDT.


Free Radical Research | 2007

The rate of cellular hydrogen peroxide removal shows dependency on GSH : Mathematical insight into in vivo H2O2 and GPx concentrations

Chin F. Ng; Freya Q. Schafer; Garry R. Buettner; V.G.J. Rodgers

Although its concentration is generally not known, glutathione peroxidase-1 (GPx-1) is a key enzyme in the removal of hydrogen peroxide (H2O2) in biological systems. Extrapolating from kinetic results obtained in vitro using dilute, homogenous buffered solutions, it is generally accepted that the rate of elimination of H2O2in vivo by GPx is independent of glutathione concentration (GSH). To examine this doctrine, a mathematical analysis of a kinetic model for the removal of H2O2 by GPx was undertaken to determine how the reaction species (H2O2, GSH, and GPx-1) influence the rate of removal of H2O2. Using both the traditional kinetic rate law approximation (classical model) and the generalized kinetic expression, the results show that the rate of removal of H2O2 increases with initial GPxr, as expected, but is a function of both GPxr and GSH when the initial GPxr is less than H2O2. This simulation is supported by the biological observations of Li et al. Using genetically altered human glioma cells in in vitro cell culture and in an in vivo tumour model, they inferred that the rate of removal of H2O2 was a direct function of GPx activity×GSH (effective GPx activity). The predicted cellular average GPxr and H2O2 for their study are approximately GPxr ≤1 µm and H2O2≈5µm based on available rate constants and an estimation of GSH. It was also found that results from the accepted kinetic rate law approximation significantly deviated from those obtained from the more generalized model in many cases that may be of physiological importance.


Free Radical Biology and Medicine | 2000

Detailed methods for the quantification of nitric oxide in aqueous solutions using either an oxygen monitor or EPR

Sujatha Venkataraman; Sean M. Martin; Freya Q. Schafer; Garry R. Buettner

The interest in nitric oxide has grown with the discovery that it has many biological functions. This has heightened the need for methods to quantify nitric oxide. Here we report two separate methods for the quantification of aqueous stock solutions of nitric oxide. The first is a new method based on the reaction of nitric oxide with oxygen in liquid phase (*NO + O2 + 2H2O --> 4HNO2); an oxygen monitor is used to measure the consumption of oxygen by nitric oxide. This method offers the advantages of being both simple and direct. The presence of nitrite or nitrate, frequent contaminants in nitric oxide stock solutions, does not interfere with the quantification of nitric oxide. Measuring the disappearance of dissolved oxygen, a reactant, in the presence of known amounts of nitric oxide has provided verification of the 4:1 stoichiometry of the reaction. The second method uses electron paramagnetic resonance spectroscopy (EPR) and the nitric oxide trap [Fe2+-(MGD)2], (MGD = N-methyl-D-glucamine dithiocarbamate). The nitrosyl complex is stable and easily quantitated as a room temperature aqueous solution. These two methods are validated with Sievers 280 Nitric Oxide Analyzer and cross-checked with standards using UV-Vis spectroscopy. The practical lower limits for measuring the concentration of nitric oxide using the oxygen monitor approach and EPR are approximately 3 microM and 500 nM, respectively. Both methods provide straightforward approaches for the standardization of nitric oxide in solution.


Free Radical Biology and Medicine | 2000

EPR detection of lipid-derived free radicals from PUFA, LDL, and cell oxidations

Steven Y. Qian; Hong P. Wang; Freya Q. Schafer; Garry R. Buettner

We have used the spin trap 5,5-dimethyl-pyrroline-1-oxide (DMPO) and EPR to detect lipid-derived radicals (Ld*) during peroxidation of polyunsaturated fatty acids (PUFA), low-density lipoprotein (LDL), and cells (K-562 and MCF-7). All oxygen-centered radical adducts of DMPO from our oxidizable targets have short lifetimes (<20 min). We hypothesized that the short lifetimes of these spin adducts are due in part to their reaction with radicals formed during lipid peroxidation. We proposed that stopping the lipid peroxidation processes by separating oxidation-mediator from oxidation-substrate with an appropriate extraction would stabilize the spin adducts. To test this hypothesis we used ethyl acetate to extract the lipid-derived radical adducts of DMPO (DMPO/Ld*) from an oxidizing docosahexaenioc acid (DHA) solution; Folch extraction was used for LDL and cell experiments. The lifetimes of DMPO spin adducts post-extraction are much longer (>10 h) than the spin adducts detected without extraction. In iron-mediated DHA oxidation we observed three DMPO adducts in the aqueous phase and two in the organic phase. The aqueous phase contains DMPO/HO* aN approximately aH approximately 14.8 G) and two carbon-centered radical adducts (aN1 approximately 15.8 G, aH1 approximately 22.6 G; aN2 approximately 15.2 G, aH2 approximately 18.9 G). The organic phase contains two long-chain lipid radical adducts (aN approximately 13.5 G, aH approximately 10.2 G; and aN approximately 12.8 G; aH approximately 6.85 G, 1.9 G). We conclude that extraction significantly increases the lifetimes of the spin adducts, allowing detection of a variety of lipid-derived radicals by EPR.


Free Radical Research | 2004

Overexpression of Manganese Superoxide Dismutase Promotes the Survival of Prostate Cancer Cells Exposed to Hyperthermia

Sujatha Venkataraman; Brett A. Wagner; Xiaohong Jiang; Hong P. Wang; Freya Q. Schafer; Justine M. Ritchie; Burns C. Patrick; Larry W. Oberley; Garry R. Buettner

It has been hypothesized that exposure of cells to hyperthermia results in an increased flux of reactive oxygen species (ROS), primarily superoxide anion radicals, and that increasing antioxidant enzyme levels will result in protection of cells from the toxicity of these ROS. In this study, the prostate cancer cell line, PC-3, and its manganese superoxide dismutase (MnSOD)-overexpressing clones were subjected to hyperthermia (43°C, 1 h). Increased expression of MnSOD increased the mitochondrial membrane potential (MMP). Hyperthermic exposure of PC-3 cells resulted in increased ROS production, as determined by aconitase inactivation, lipid peroxidation, and H2O2 formation with a reduction in cell survival. In contrast, PC-3 cells overexpressing MnSOD had less ROS production, less lipid peroxidation, and greater cell survival compared to PC-3 Wt cells. Since MnSOD removes superoxide, these results suggest that superoxide free radical or its reaction products are responsible for part of the cytotoxicity associated with hyperthermia and that MnSOD can reduce cellular injury and thereby enhance heat tolerance.


Photochemistry and Photobiology | 1999

Singlet Oxygen Toxicity Is Cell Line‐dependent: A Study of Lipid Peroxidation in Nine Leukemia Cell Lines

Freya Q. Schafer; Garry R. Buettner

Singlet oxygen (1O2) can be quenched by water, lipids, proteins, nucleic acids and other small molecules. Polyunsaturated fatty acids (PUFA) of cells principally quench 1O2 by chemical mechanisms, producing lipid hydroperoxides, while proteins physically and chemically quench 1O2. Because cell lines can have different PUFA and protein levels, we hypothesized that 1O2 toxicity will vary between cell lines. We used Photofrin® as a source of 1O2. Exposure of nine different leukemia cell lines (CEM, HEL, HL‐60, K‐562, KG‐1, L1210, Molt‐4, THP‐1 and U‐937) to Photofrin and light results in changes in membrane permeability (trypan blue) that vary with cell line. The greater the lipid content of the cell line, the less susceptible they are to membrane damage. When the cell media was supplemented with docosahexaenoic acid (DHA, 22:6), the overall unsaturation of cellular lipids increased. Photofrin and light resulted in increased radical formation in these supplemented cells compared to controls; however, there was no difference in membrane permeability between DHA‐supplemented and control cells. Lipid‐derived radical formation (electron paramagnetic resonance spin trapping) was cell line dependent; but no correlation between lipid content of cells and radical formation was found. However, we found that the greater the protein content of cells the more they were protected against membrane damage induced by Photofrin photosensitization. This suggests that cellular proteins are a key target for 1O2‐mediated toxicity. A remarkable observation is that cell size correlates inversely with ability of cells to cope with a given flux of 1O2.


Antioxidants & Redox Signaling | 2004

Detection of Lipid Radicals Using EPR

Sujatha Venkataraman; Freya Q. Schafer; Garry R. Buettner

Cells oxidize molecules to generate energy and to make the materials to build and support the structures and functions needed for life. However, unwanted oxidations can damage these same structures and impair function. Lipids (the lipids in membranes and lipoproteins) are targets of unwanted oxidations. The primary mechanism of these oxidations is free radical-mediated chain reactions. Here we provide an overview of how electron paramagnetic resonance (EPR) can be used to detect the free radicals formed during lipid peroxidation. Although direct detection of lipid-derived radicals has been accomplished, the approach is not feasible for detecting these radicals in cells. Spin trapping with alpha-(4-pyridyl-1-oxide)-N-tert-butylnitrone and 5,5-dimethyl-pyrroline-1-oxide has provided the most information on cellular lipid peroxidation. We present some considerations for successful detection of lipid radicals by EPR.

Collaboration


Dive into the Freya Q. Schafer's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sujatha Venkataraman

University of Colorado Denver

View shared research outputs
Top Co-Authors

Avatar

Steven Y. Qian

North Dakota State University

View shared research outputs
Top Co-Authors

Avatar

Chin F. Ng

University of California

View shared research outputs
Top Co-Authors

Avatar

Eric E. Kelley

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge