Friederike Kirsch
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Friederike Kirsch.
Journal of Cerebral Blood Flow and Metabolism | 2008
Wolf Rüdiger Schäbitz; Carola Krüger; Claudia Pitzer; Daniela Weber; Rico Laage; Nikolaus Gassler; Jaroslaw Aronowski; Walter Mier; Friederike Kirsch; Tanjew Dittgen; Alfred Bach; Clemens Sommer; Armin Schneider
Granulocyte-macrophage colony-stimulating factor (GM-CSF) is a hematopoietic cytokine responsible for the proliferation, differentiation, and maturation of cells of the myeloid lineage, which was cloned more than 20 years ago. Here we uncovered a novel function of GM-CSF in the central nervous system (CNS). We identified the GM-CSF α-receptor as an upregulated gene in a screen for ischemia-induced genes in the cortex. This receptor is broadly expressed on neurons throughout the brain together with its ligand and induced by ischemic insults. In primary cortical neurons and human neuroblastoma cells, GM-CSF counteracts programmed cell death and induces BCL-2 and BCL-Xl expression in a dose- and time-dependent manner. Of the signaling pathways studied, GM-CSF most prominently induced the PI3K-Akt pathway, and inhibition of Akt strongly decreased antiapoptotic activity. Intravenously given GM-CSF passes the blood—brain barrier, and decreases infarct damage in two different experimental stroke models (middle cerebral artery occlusion (MCAO), and combined common carotid/distal MCA occlusion) concomitant with induction of BCL-Xl expression. Thus, GM-CSF acts as a neuroprotective protein in the CNS. This finding is remarkably reminiscent of the recently discovered functionality of two other hematopoietic factors, erythropoietin and granulocyte colony-stimulating factor in the CNS. The identification of a third hematopoietic factor acting as a neurotrophic factor in the CNS suggests a common principle in the functional evolution of these factors. Clinically, GM-CSF now broadens the repertoire of hematopoietic factors available as novel drug candidates for stroke and neurodegenerative diseases.
Brain | 2008
Claudia Pitzer; Carola Krüger; Christian Plaas; Friederike Kirsch; Tanjew Dittgen; Ralph Müller; Rico Laage; Stefan Kastner; Stefanie Suess; Robert Spoelgen; Alexandre Henriques; Hannelore Ehrenreich; Wolf-Rüdiger Schäbitz; Alfred Bach; Armin Schneider
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease that results in progressive loss of motoneurons, motor weakness and death within 1–5 years after disease onset. Therapeutic options remain limited despite a substantial number of approaches that have been tested clinically. In particular, various neurotrophic factors have been investigated. Failure in these trials has been largely ascribed to problems of insufficient dosing or inability to cross the blood–brain barrier (BBB). We have recently uncovered the neurotrophic properties of the haematopoietic protein granulocyte-colony stimulating factor (G-CSF). The protein is clinically well tolerated and crosses the intact BBB. This study examined the potential role of G-CSF in motoneuron diseases. We investigated the expression of the G-CSF receptor in motoneurons and studied effects of G-CSF in a motoneuron cell line and in the SOD1(G93A) transgenic mouse model. The neurotrophic growth factor was applied both by continuous subcutaneous delivery and CNS-targeted transgenic overexpression. This study shows that given at the stage of the disease where muscle denervation is already evident, G-CSF leads to significant improvement in motor performance, delays the onset of severe motor impairment and prolongs overall survival of SOD1(G93A)tg mice. The G-CSF receptor is expressed by motoneurons and G-CSF protects cultured motoneuronal cells from apoptosis. In ALS mice, G-CSF increased survival of motoneurons and decreased muscular denervation atrophy. We conclude that G-CSF is a novel neurotrophic factor for motoneurons that is an attractive and feasible drug candidate for the treatment of ALS.
Experimental Neurology | 2009
Sevgi Sevimli; Kai Diederich; Jan-Kolja Strecker; Matthias Schilling; Rainer Klocke; Sigrid Nikol; Friederike Kirsch; Armin Schneider; Wolf-Rüdiger Schäbitz
Several lines of evidence have demonstrated beneficial effects of the hematopoietic factor G-CSF in experimental stroke. A conclusive demonstration of this effect in G-CSF deficient mice is, however, lacking. We therefore investigated the effect of G-CSF deficiency on infarct volumes, functional recovery, mRNA and protein expression of the matrix metalloproteinase 9 (MMP-9) after stroke. Furthermore we tested the efficacy of G-CSF substitution in G-CSF deficient animals to prevent the potential consequences of G-CSF deficiency. In the present study experimental stroke was induced in female non-treated wildtype (wt), G-CSF deficient mice and G-CSF substituted G-CSF deficient mice followed by assessment of infarct volumes, neurological outcome and sensorimotor function. In addition, immunohistochemistry and real-time PCR of the peri-ischemic area were performed. G-CSF deficient mice showed increased infarct volumes, whereas G-CSF substituted mice had a remarkable reduction in lesion size compared to wt mice. These findings are accompanied by an improvement in neurological and sensorimotor function. G-CSF deficiency resulted in an upregulation of MMP-9 in the direct peri-ischemic tissue. Treatment with G-CSF suppressed the upregulation of MMP-9. Taken together, G-CSF deficiency clearly resulted in enlarged infarct volumes, and worsened neurological outcome. G-CSF substitution abolished these negative effects, led to significant reduced lesion volumes, and improved neurological outcome. G-CSF mediated suppression of MMP-9 further demonstrates that endogenous G-CSF plays a significant role in brain protective mechanisms. We have shown for the first time that endogenous G-CSF is required for brain recovery mechanisms after stroke.
Journal of Neurochemistry | 2010
Claudia Pitzer; Stefan Klussmann; Carola Krüger; Elisabeth Letellier; Christian Plaas; Tanjew Dittgen; Friederike Kirsch; Bram Stieltjes; Daniela Weber; Rico Laage; Ana Martin-Villalba; Armin Schneider
J. Neurochem. (2010) 113, 930–942.
BMC Developmental Biology | 2008
Friederike Kirsch; Carola Krüger; Armin Schneider
BackgroundGranulocyte colony-stimulating (G-CSF) factor is a well-known hematopoietic growth factor stimulating the proliferation and differentiation of myeloid progenitors. Recently, we uncovered that G-CSF acts also as a neuronal growth factor in the brain, which promotes adult neural precursor differentiation and enhances regeneration of the brain after insults. In adults, the receptor for G-CSF is predominantly expressed in neurons in many brain areas. We also described expression in neurogenic regions of the adult brain, such as the subventricular zone and the subgranular layer of the dentate gyrus. In addition, we found close co-localization of the G-CSF receptor and its ligand G-CSF. Here we have conducted a systematic expression analysis of G-CSF receptor and its ligand in the developing embryo.ResultsOutside the central nervous system (CNS) we found G-CSF receptor expression in blood vessels, muscles and their respective precursors and neurons. The expression of the G-CSF receptor in the developing CNS was most prominent in radial glia cells.ConclusionOur data imply that in addition to the function of G-CSF and its receptor in adult neurogenesis, this system also has a role in embryonic neurogenesis and nervous system development.
European Journal of Neuroscience | 2007
Sven Mühlfriedel; Friederike Kirsch; Peter Gruss; Kamal Chowdhury; Anastassia Stoykova
Differential gene expression across the embryonic cerebral cortex is assumed to play a role in the subdivision of the cortex into distinct areas with specific morphology, physiology and function. In a search for genes that may be involved in the cortical regionalization during late neurogenesis in mouse, we performed an extensive in‐situ expression analysis at embryonic day (E)16 and E18. The examined candidate genes were selected beforehand by a microarray screen by virtue of their preferential expression in the anlagen of the motor, somatosensory, visual and cingulate cortices or hippocampus. We present new information about graded or regionally enriched expression of 25 genes (nine of which are novel genes) across the mouse embryonic cortex, in progenitor cells as well as in the cortical plate. The established differential expression of most of these genes is persistent at both stages studied, suggesting that their expression is regulated by an intrinsic programme. For some of the genes, the concept of intrinsic regulation is further substantiated by the high similarity of the reported expression patterns at E16 and E18 and published data from earlier stages. Few genes with robust expression in the E16 caudal cortex showed a more restricted pattern at E18, possibly because of their response to extrinsic cues. In addition, several genes appeared to be suitable novel markers for amygdalar and diencephalic nuclei. Taken together, our findings reveal novel molecular partitions of the late mouse cortex that are in accordance with the model of a leading role of intrinsic mechanisms in cortical arealization.
PLOS ONE | 2012
Tanjew Dittgen; Claudia Pitzer; Christian Plaas; Friederike Kirsch; Gerhard Vogt; Rico Laage; Armin Schneider
Granulocyte-colony stimulating factor (G-CSF) improves outcome after experimental SCI by counteracting apoptosis, and enhancing connectivity in the injured spinal cord. Previously we have employed the mouse hemisection SCI model and studied motor function after subcutaneous or transgenic delivery of the protein. To further broaden confidence in animal efficacy data we sought to determine efficacy in a different model and a different species. Here we investigated the effects of G-CSF in Wistar rats using the New York University Impactor. In this model, corroborating our previous data, rats treated subcutaneously with G-CSF over 2 weeks show significant improvement of motor function.
Journal of Neurochemistry | 2011
Robert Spoelgen; Annette Meyer; Anja Moraru; Friederike Kirsch; Angela Vogt-Eisele; Christian Plaas; Claudia Pitzer; Armin Schneider
J. Neurochem. (2011) 119, 165–175.
Experimental & Translational Stroke Medicine | 2014
Armin Schneider; Andreas Rogalewski; Oliver Wafzig; Friederike Kirsch; Norbert Gretz; Carola Krüger; Kai Diederich; Claudia Pitzer; Rico Laage; Christian Plaas; Gerhard Vogt; Jens Minnerup; Wolf-Rüdiger Schäbitz
Background and purposeBoth the immobilization of the unaffected arm combined with physical therapy (forced arm use, FAU) and voluntary exercise (VE) as model for enriched environment are promising approaches to enhance recovery after stroke. The genomic mechanisms involved in long-term plasticity changes after different means of rehabilitative training post-stroke are largely unexplored. The present investigation explored the effects of these physical therapies on behavioral recovery and molecular markers of regeneration after experimental ischemia.Methods42 Wistar rats were randomly treated with either forced arm use (FAU, 1-sleeve plaster cast onto unaffected limb at 8/10 days), voluntary exercise (VE, connection of a freely accessible running wheel to cage), or controls with no access to a running wheel for 10 days starting at 48 hours after photothrombotic stroke of the sensorimotor cortex. Functional outcome was measured using sensorimotor test before ischemia, after ischemia, after the training period of 10 days, at 3 and 4 weeks after ischemia. Global gene expression changes were assessed from the ipsi- and contralateral cortex and the hippocampus.ResultsFAU-treated animals demonstrated significantly improved functional recovery compared to the VE-treated group. Both were superior to cage control. A large number of genes are altered by both training paradigms in the ipsi- and contralateral cortex and the hippocampus. Overall, the extent of changes observed correlated well with the functional recovery obtained. One category of genes overrepresented in the gene set is linked to neuronal plasticity processes, containing marker genes such as the NMDA 2a receptor, PKC ζ, NTRK2, or MAP 1b.ConclusionsWe show that physical training after photothrombotic stroke significantly and permanently improves functional recovery after stroke, and that forced arm training is clearly superior to voluntary running training. The behavioral outcomes seen correlate with patterns and extent of gene expression changes in all brain areas examined. We propose that physical training induces a fundamental change in plasticity-relevant gene expression in several brain regions that enables recovery processes. These results contribute to the debate on optimal rehabilitation strategies, and provide a valuable source of molecular entry points for future pharmacological enhancement of recovery.
PLOS ONE | 2010
Andreas Rogalewski; Tanjew Dittgen; Matthias Klugmann; Friederike Kirsch; Carola Krüger; Claudia Pitzer; Jens Minnerup; Wolf-Rüdiger Schäbitz; Armin Schneider
Background We have previously identified Semaphorin 6a (Sema6A) as an upregulated gene product in a gene expression screen in cortical ischemia [1]. Semaphorin 6a was regulated during the recovery phase following ischemia in the cortex. Semaphorin 6a is a member of the superfamily of semaphorins involved in axon guidance and other functions. We hypothesized that the upregulation indicates a crucial role of this molecule in post-stroke rewiring of the brain. Here we have tested this hypothesis by overexpressing semaphorin 6a in the cortex by microinjection of a modified AAV2-virus. A circumscribed cortical infarct was induced, and the recovery of rats monitored for up to 4 weeks using a well-established test battery (accelerated rotarod training paradigm, cylinder test, adhesive tape removal). We observed a significant improvement in post-ischemic recovery of animals injected with the semaphorin 6a virus versus animals treated with a control virus. We conclude that semaphorin 6a overexpressed in the cortex enhances recovery after cerebral ischemia. Semaphorin 6a may represent a novel therapeutic candidate for the treatment of chronic stroke.