Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fu-Min Menn is active.

Publication


Featured researches published by Fu-Min Menn.


Environmental Health Perspectives | 2007

Attributing Effects of Aqueous C60 Nano-Aggregates to Tetrahydrofuran Decomposition Products in Larval Zebrafish by Assessment of Gene Expression

Theodore B. Henry; Fu-Min Menn; James T. Fleming; John Wilgus; R. N. Compton; Gary S. Sayler

Background C60 is a highly insoluble nanoparticle that can form colloidal suspended aggregates in water, which may lead to environmental exposure in aquatic organisms. Previous research has indicated toxicity from C60 aggregate; however, effects could be because of tetrahydrofuran (THF) vehicle used to prepare aggregates. Objective Our goal was to investigate changes in survival and gene expression in larval zebrafish Danio rerio after exposure to aggregates of C60 prepared by two methods: a) stirring and sonication of C60 in water (C60–water); and b) suspension of C60 in THF followed by rotovaping, resuspension in water, and sparging with nitrogen gas (THF–C60). Results Survival of larval zebrafish was reduced in THF–C60 and THF–water but not in C60–water. The greatest differences in gene expression were observed in fish exposed to THF–C60 and most (182) of these genes were similarly expressed in fish exposed to THF–water. Significant up-regulation (3- to 7-fold) of genes involved in controlling oxidative damage was observed after exposure to THF–C60 and THF–water. Analyses of THF–C60 and THF–water by gas chromatography–mass spectrometry did not detect THF but found THF oxidation products γ-butyrolactone and tetrahydro-2-furanol. Toxicity of γ-butyrolactone (72-hr lethal concentration predicted to kill 50% was 47 ppm) indicated effects in THF treatments can result from γ-butyrolactone toxicity. Conclusion This research is the first to link toxic effects directly to a THF degradation product (γ-butyrolactone) rather than to C60 and may explain toxicity attributed to C60 in other investigations. The present work was first presented at the meeting “Overcoming Obstacles to Effective Research Design in Nanotoxicology” held 24–26 April 2006 in Cambridge, Massachusetts, USA.


Molecular Microbiology | 2010

Phosphatidylserine synthase and phosphatidylserine decarboxylase are essential for cell wall integrity and virulence in Candida albicans.

Ying-Lien Chen; Anthony E. Montedonico; Sarah Kauffman; John R. Dunlap; Fu-Min Menn; Todd B. Reynolds

Phospholipid biosynthetic pathways play crucial roles in the virulence of several pathogens; however, little is known about how phospholipid synthesis affects pathogenesis in fungi such as Candida albicans. A C. albicans phosphatidylserine (PS) synthase mutant, cho1Δ/Δ, lacks PS, has decreased phosphatidylethanolamine (PE), and is avirulent in a mouse model of systemic candidiasis. The cho1Δ/Δ mutant exhibits defects in cell wall integrity, mitochondrial function, filamentous growth, and is auxotrophic for ethanolamine. PS is a precursor for de novo PE biosynthesis. A psd1Δ/Δ psd2Δ/Δ double mutant, which lacks the PS decarboxylase enzymes that convert PS to PE in the de novo pathway, has diminished PE levels like those of the cho1Δ/Δ mutant. The psd1Δ/Δ psd2Δ/Δ mutant exhibits phenotypes similar to those of the cho1Δ/Δ mutant; however, it is slightly more virulent and has less of a cell wall defect. The virulence losses exhibited by the cho1Δ/Δ and psd1Δ/Δ psd2Δ/Δ mutants appear to be related to their cell wall defects which are due to loss of de novo PE biosynthesis, but are exacerbated by loss of PS itself. Cho1p is conserved in fungi, but not mammals, so fungal PS synthase is a potential novel antifungal drug target.


Applied and Environmental Microbiology | 2004

Abundance of Dioxygenase Genes Similar to Ralstonia sp. Strain U2 nagAc Is Correlated with Naphthalene Concentrations in Coal Tar-Contaminated Freshwater Sediments

Hebe M. Dionisi; Christopher S. Chewning; Katherine H. Morgan; Fu-Min Menn; James P. Easter; Gary S. Sayler

ABSTRACT We designed a real-time PCR assay able to recognize dioxygenase large-subunit gene sequences with more than 90% similarity to the Ralstonia sp. strain U2 nagAc gene (nagAc-like gene sequences) in order to study the importance of organisms carrying these genes in the biodegradation of naphthalene. Sequencing of PCR products indicated that this real-time PCR assay was specific and able to detect a variety of nagAc-like gene sequences. One to 100 ng of contaminated-sediment total DNA in 25-μl reaction mixtures produced an amplification efficiency of 0.97 without evident PCR inhibition. The assay was applied to surficial freshwater sediment samples obtained in or in close proximity to a coal tar-contaminated Superfund site. Naphthalene concentrations in the analyzed samples varied between 0.18 and 106 mg/kg of dry weight sediment. The assay for nagAc-like sequences indicated the presence of (4.1 ± 0.7) × 103 to (2.9 ± 0.3) × 105 copies of nagAc-like dioxygenase genes per μg of DNA extracted from sediment samples. These values corresponded to (1.2 ± 0.6) × 105 to (5.4 ± 0.4) × 107 copies of this target per g of dry weight sediment when losses of DNA during extraction were taken into account. There was a positive correlation between naphthalene concentrations and nagAc-like gene copies per microgram of DNA (r = 0.89) and per gram of dry weight sediment (r = 0.77). These results provide evidence of the ecological significance of organisms carrying nagAc-like genes in the biodegradation of naphthalene.


Nanotoxicology | 2011

The association between nC60 and 17α-ethinylestradiol (EE2) decreases EE2 bioavailability in zebrafish and alters nanoaggregate characteristics

June-Woo Park; Theodore B. Henry; Shaun G. Ard; Fu-Min Menn; R. N. Compton; Gary S. Sayler

Abstract Manufactured nanoparticles (NPs) released into surface waters will associate with other substances and these interactions may affect environmental fate and bioavailability of NPs and the associated substances. We investigated the association between aqueous aggregates of C60 (nC60) and synthetic estrogen, 17α-ethinylestradiol (EE2), and considered nC60 physicochemistry and EE2 bioavailability (by measuring vitellogenin (vtg1A/B) gene expression) in zebrafish. Bioavailability of EE2 was reduced with increasing concentration of nC60 (P < 0.05), and bioavailability of EE2 decreased further after aging 28 d with nC60. Reduction in EE2 bioavailability was correlated with computed surface area of nC60, and reduced bioavailability of EE2 upon aging was consistent with absorption of EE2 within nC60 aggregates. Size and zeta potential of nC60 particles were affected by EE2 (1 μg/L) and also by aging (28 d) in aqueous phase. Results indicate that nC60 can reduce bioavailability of some substances and influence environmental fate and transport of associated substances.


Chemosphere | 2010

No bioavailability of 17α-ethinylestradiol when associated with nC60 aggregates during dietary exposure in adult male zebrafish (Danio rerio).

June-Woo Park; Theodore B. Henry; Fu-Min Menn; R. N. Compton; Gary S. Sayler

The C(60) fullerene is a manufactured carbon nanoparticle (CNP) that could pose a risk to humans and other organisms after release into the environment. In surface waters, C(60) is likely to be present as aggregates of nC(60) and these aggregates can associate with other substances that are toxic. Our goal was to evaluate the association of a model contaminant [17α-ethinylestradiol (EE2)] with nC(60) and determine bioavailability of EE2 after accumulation by a filter feeding organism [Brine shrimp (BS) Artemia sp.] and subsequent dietary exposure in zebrafish. Aqueous suspensions of nC(60) were prepared (600 mg C(60)/900 mL, 6-month water stirred method) with/without EE2 (1 μg/L) and BS were exposed to these preparations. Accumulation of nC(60) in gut of BS was assessed by light microscopy, and C(60) were extracted from BS and concentration analyzed by HPLC. Adult male zebrafish were fed (5d) live BS according to the following treatments: BS (control); BS containing nC(60); BS containing nC(60)+EE2; or BS containing EE2. Liver was excised from exposed fish and total RNA was extracted for assessment of vitellogenin gene (vtg1A/B) expression. The vtg1A/B was highly up-regulated in fish exposed to BS containing EE2, but expression of vtg1A/B did not differ from controls in other treatments. The EE2 associated with nC(60) did not become bioavailable in zebrafish during passage through the intestinal tract of zebrafish. Results have implications on the effect of nC(60) on the bioavailability of co-contaminants in organisms during dietary exposure.


Journal of Industrial Microbiology & Biotechnology | 1997

Degradation of nonionic surfactants and polychlorinated biphenyls by recombinant field application vectors

Curtis A. Lajoie; Alice C. Layton; James P. Easter; Fu-Min Menn; Gary S. Sayler

Degradation of polychlorinated biphenyls (PCBs) in the environment is limited by their aqueous solubility and the degradative competence of indigenous populations. Field application vectors (FAVs) have been developed in which surfactants are used to both increase the solubility of the PCBs and support the growth of surfactant-degrading strains engineered for PCB degradation. Surfactant and PCB degradation by two recombinant strains were investigated. Pseudomonas putida IPL5 utilizes both alkylethoxylate [polyoxyethylene 10 lauryl ether (POL)] and alkylphenolethoxylate [Igepal CO-720 (IGP)] surfactants as growth substrates, but only degrades the ethoxylate moiety. The resulting degradation products from the alkyl- and alkylphenolethoxylate surfactants were 2-(dodecyloxy)ethanol and nonylphenoldiethoxylates, respectively. Ralstonia eutropha B30P4 grows on alkylethoxylate surfactants without the appearance of solvent-extractable degradation products. It also degrades the 2-(dodecyloxy)ethanol produced by strain IPL5 from the alkylethoxylate surfactants. The extent of degradation of the alkylethoxylate surfactant (POL) was greater for strain IPL5 (90%) than for B30P4 (60%) as determined by the cobaltothiocyanate active substances method (CTAS). The recombinant strain B30P4::TnPCB grew on biphenyl. In contrast, the recombinant strain IPL5::TnPCB could not grow on biphenyl, and PCB degradation was inhibited in the presence of biphenyl. The most extensive surfactant and PCB degradation was achieved by the use of both recombinant strains together in the absence of biphenyl. PCB (Aroclor 1242) and surfactant (POL) concentrations were reduced from 25 ppm and 2000 ppm, respectively, to 6.5 ppm and 225 ppm, without the accumulation of surfactant degradation products. Given the inherent complexity of commercial surfactant preparations, the use of recombinant consortia to achieve extensive surfactant and PCB degradation appears to be an environmentally acceptable and effective PCB remediation option.


Food and Chemical Toxicology | 2012

Lack of androgenicity and estrogenicity of the three monomers used in Eastman's Tritan™ copolyesters.

Thomas G. Osimitz; Melanie L. Eldridge; Eddie Sloter; William J. Welsh; Ni Ai; Gary S. Sayler; Fu-Min Menn; Colleen Toole

Eastman Tritan™ copolyester, a novel plastic from Eastman is manufactured utilizing three monomers, di-methylterephthalate (DMT), 1,4-cyclohexanedimethanol (CHDM), and 2,2,4,4-tetramethyl-1,3-cyclobutanediol (TMCD) in various ratios. As with most any polymer, the monomers along with the high molecular weight oligomers, whose toxicity is most commonly represented by the monomers, make up the predominate amount of free chemicals available for leaching into the environment and/or foods. In light of the high level of public concern about the presence of endocrine (primarily estrogenic) activity ascribed to certain plastics and chemicals in the environment, Tritans™ monomers were evaluated using QSAR for binding to the androgen receptor and estrogen receptors (alpha and beta) as well as a battery of in vitro and in vivo techniques to determine their potential androgenicity or estrogenicity. The findings were universally negative. When these data are coupled with other in vivo data developed to assess systemic toxicity and developmental and reproductive toxicity, the data clearly indicate that these monomers do not pose an androgenic or estrogenic risk to humans. Additional data presented also support such a conclusion for terephthalic acid (TPA). TPA is also a common polyester monomer and is the main mammalian metabolite formed from DMT.


Reproductive Sciences | 2015

Early Life Triclocarban Exposure During Lactation Affects Neonate Rat Survival

Rebekah C. Kennedy; Fu-Min Menn; Laura Healy; Kellie A. Fecteau; Pan Hu; Ji-Young Bae; Nancy A. Gee; Bill L. Lasley; Ling Zhao; Jiangang Chen

Triclocarban (3,4,4′-trichlorocarbanilide; TCC), an antimicrobial used in bar soaps, affects endocrine function in vitro and in vivo. This study investigates whether TCC exposure during early life affects the trajectory of fetal and/or neonatal development. Sprague Dawley rats were provided control, 0.2% weight/weight (w/w), or 0.5% w/w TCC-supplemented chow through a series of 3 experiments that limited exposure to critical growth periods: gestation, gestation and lactation, or lactation only (cross-fostering) to determine the susceptible windows of exposure for developmental consequences. Reduced offspring survival occurred when offspring were exposed to TCC at concentrations of 0.2% w/w and 0.5% w/w during lactation, in which only 13% of offspring raised by 0.2% w/w TCC dams survived beyond weaning and no offspring raised by 0.5% w/w TCC dams survived to this period. In utero exposure status had no effect on survival, as all pups nursed by control dams survived regardless of their in utero exposure status. Microscopic evaluation of dam mammary tissue revealed involution to be a secondary outcome of TCC exposure rather than a primary effect of compound administration. The average concentration of TCC in the milk was almost 4 times that of the corresponding maternal serum levels. The results demonstrate that gestational TCC exposure does not affect the ability of dams to carry offspring to term but TCC exposure during lactation has adverse consequences on the survival of offspring although the mechanism of reduced survival is currently unknown. This information highlights the importance of evaluating the safety of TCC application in personal care products and the impacts during early life exposure.


Environmental Toxicology and Chemistry | 2014

A computational approach predicting CYP450 metabolism and estrogenic activity of an endocrine disrupting compound (PCB‐30)

Jason B. Harris; Melanie L. Eldridge; Gary S. Sayler; Fu-Min Menn; Alice C. Layton; Jerome Baudry

Endocrine disrupting chemicals influence growth and development through interactions with the hormone system, often through binding to hormone receptors such as the estrogen receptor. Computational methods can predict endocrine disrupting chemical activity of unmodified compounds, but approaches predicting activity following metabolism are lacking. The present study uses a well-known environmental contaminant, PCB-30 (2,4,6-trichlorobiphenyl), as a prototype endocrine disrupting chemical and integrates predictive (computational) and experimental methods to determine its metabolic transformation by cytochrome P450 3A4 (CYP3A4) and cytochrome P450 2D6 (CYP2D6) into estrogenic byproducts. Computational predictions suggest that hydroxylation of PCB-30 occurs at the 3- or 4-phenol positions and leads to metabolites that bind more strongly than the parent molecule to the human estrogen receptor alpha (hER-α). Gas chromatography-mass spectrometry experiments confirmed that the primary metabolite for CYP3A4 and CYP2D6 is 4-hydroxy-PCB-30, and the secondary metabolite is 3-hydroxy-PCB-30. Cell-based bioassays (bioluminescent yeast expressing hER-α) confirmed that hydroxylated metabolites are more estrogenic than PCB-30. These experimental results support the applied models ability to predict the metabolic and estrogenic fate of PCB-30, which could be used to identify other endocrine disrupting chemicals involved in similar pathways.


Chemosphere | 2014

C60 reduces the bioavailability of mercury in aqueous solutions

Wenjuan Shi; Fu-Min Menn; Tingting Xu; Zibo T. Zhuang; Clara Beasley; Steven Ripp; Alice C. Layton; Gary S. Sayler

The effects of C60 on mercury bioavailability and sorption were investigated at different C60 dosages, reaction times, and pH ranges using the merR::luxCDABE bioluminescent bioreporter Escherichia coli ARL1. The results demonstrated that the bioavailability of mercury (Hg(2+)) decreased with increasing C60 dosage. Approximately 30% of aqueous mercury became biologically unavailable 2h after interaction with C60 at a mass ratio of C60 to mercury as low as 0.01. However, this reduction in bioavailability plateaued at a mass ratio of C60 to mercury of 10 with a further increase in C60 concentrations resulting in only a 20% additional decrease in bioavailability. If this reduction in bioluminescence output is attributable to mercury sorption on C60, then each one log-order increase in C60 concentration resulted in a 0.86 log-order decrease in the mercury partitioning coefficient (Kd). This relationship implies the presence of high mercury-affinitive sites on C60. The length of reaction time was found to play a more important role than C60 dosage in reducing Hg(2+) bioavailability, suggesting an overall slow kinetics of the C60-Hg interactions. In addition, lowering the pH from 7.2 to 5.8 decreased mercury bioavailability due likely to the increase in mercurys association with C60. These results suggest that C60 may be useful in capturing soluble mercury and thus reducing mercury biotoxicity.

Collaboration


Dive into the Fu-Min Menn's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ni Ai

Rutgers University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven Ripp

University of Tennessee

View shared research outputs
Researchain Logo
Decentralizing Knowledge