Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fuchu He is active.

Publication


Featured researches published by Fuchu He.


Science | 2010

Regulation of Cellular Metabolism by Protein Lysine Acetylation

Shimin Zhao; Wei Xu; Wenqing Jiang; Wei Yu; Yan Lin; Tengfei Zhang; Jun Yao; Li Zhou; Yaxue Zeng; Hong Li; Yixue Li; Jiong Shi; Wenlin An; Susan M. Hancock; Fuchu He; Lunxiu Qin; Jason W. Chin; Pengyuan Yang; Xian Chen; Qun Ying Lei; Yue Xiong; Kun-Liang Guan

Metabolic Regulation Through Acetylation Covalent modification of lysine residues in various proteins in the nucleus is a recognized mechanism for control of transcription. Now two papers suggest that acetylation may represent an important regulatory mechanism controlling the function of metabolic enzymes (see the Perspective by Norvell and McMahon). Zhao et al. (p. 1000) found that a large proportion of enzymes in various metabolic pathways were acetylated in human liver cells. Acetylation regulated various enzymes by distinct mechanisms, directly activating some, inhibiting one, and controlling the stability of another. Control of metabolism by acetylation appears to be evolutionarily conserved: Wang et al. (p. 1004) found that the ability of the bacterium Salmonella entericum to optimize growth on distinct carbon sources required differential acetylation of key metabolic enzymes, thus controlling flux through metabolic pathways. Regulation of enzymes by acetylation controls metabolic function in human liver cells. Protein lysine acetylation has emerged as a key posttranslational modification in cellular regulation, in particular through the modification of histones and nuclear transcription regulators. We show that lysine acetylation is a prevalent modification in enzymes that catalyze intermediate metabolism. Virtually every enzyme in glycolysis, gluconeogenesis, the tricarboxylic acid (TCA) cycle, the urea cycle, fatty acid metabolism, and glycogen metabolism was found to be acetylated in human liver tissue. The concentration of metabolic fuels, such as glucose, amino acids, and fatty acids, influenced the acetylation status of metabolic enzymes. Acetylation activated enoyl–coenzyme A hydratase/3-hydroxyacyl–coenzyme A dehydrogenase in fatty acid oxidation and malate dehydrogenase in the TCA cycle, inhibited argininosuccinate lyase in the urea cycle, and destabilized phosphoenolpyruvate carboxykinase in gluconeogenesis. Our study reveals that acetylation plays a major role in metabolic regulation.


Nature Genetics | 2010

A genome-wide association study of nasopharyngeal carcinoma identifies three new susceptibility loci

Jin Xin Bei; Yi Li; Wei Hua Jia; Bing Jian Feng; Gangqiao Zhou; Li Zhen Chen; Qi Sheng Feng; Hui Qi Low; Hongxing Zhang; Fuchu He; E. Shyong Tai; Tiebang Kang; Edison T. Liu; Jianjun Liu; Yi Xin Zeng

To identify genetic susceptibility loci for nasopharyngeal carcinoma (NPC), a genome-wide association study was performed using 464,328 autosomal SNPs in 1,583 NPC affected individuals (cases) and 1,894 controls of southern Chinese descent. The top 49 SNPs from the genome-wide association study were genotyped in 3,507 cases and 3,063 controls of southern Chinese descent from Guangdong and Guangxi. The seven supportive SNPs were further confirmed by transmission disequilibrium test analysis in 279 trios from Guangdong. We identified three new susceptibility loci, TNFRSF19 on 13q12 (rs9510787, Pcombined = 1.53 × 10−9, odds ratio (OR) = 1.20), MDS1-EVI1 on 3q26 (rs6774494, Pcombined = 1.34 × 10−8, OR = 0.84) and the CDKN2A-CDKN2B gene cluster on 9p21 (rs1412829, Pcombined = 4.84 × 10−7, OR = 0.78). Furthermore, we confirmed the role of HLA by revealing independent associations at rs2860580 (Pcombined = 4.88 × 10−67, OR = 0.58), rs2894207 (Pcombined = 3.42 × 10−33, OR = 0.61) and rs28421666 (Pcombined = 2.49 × 10−18, OR = 0.67). Our findings provide new insights into the pathogenesis of NPC by highlighting the involvement of pathways related to TNFRSF19 and MDS1-EVI1 in addition to HLA molecules.


Nature Genetics | 2010

Genome-wide association study identifies 1p36.22 as a new susceptibility locus for hepatocellular carcinoma in chronic hepatitis B virus carriers

Hongxing Zhang; Yun Zhai; Zhibin Hu; Chen Wu; Ji Qian; Weihua Jia; Fuchao Ma; Wenfeng Huang; Lixia Yu; Wei Yue; Zhifu Wang; Peiyao Li; Yang Zhang; Renxiang Liang; Zhongliang Wei; Ying Cui; Weimin Xie; Mi Cai; Xinsen Yu; Yunfei Yuan; Xia Xia; Xiumei Zhang; Hao Yang; Wei Qiu; Yang J; Feng Gong; Minshan Chen; Hongbing Shen; Dongxin Lin; Yi Xin Zeng

To identify susceptibility variants for hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC), we conducted a genome-wide association study by genotyping 440,794 SNPs in 355 chronic HBV carriers with HCC and 360 chronic HBV carriers without HCC, all of Chinese ancestry. We identified one intronic SNP (rs17401966) in KIF1B on chromosome 1p36.22 that was highly associated with HBV-related HCC and confirmed this association in five additional independent samples, consisting of 1,962 individuals with HCC, 1,430 control subjects and 159 family trios. Across the six studies, the association with rs17401966 was highly statistically significant (joint odds ratio = 0.61, P = 1.7 × 10−18). In addition to KIF1B, the association region tagged two other plausible causative genes, UBE4B and PGD. Our findings provide evidence that the 1p36.22 locus confers susceptibility to HBV-related HCC, and suggest that KIF1B-, UBE4B- or PGD-related pathways might be involved in the pathogenesis of this malignancy.


Molecular & Cellular Proteomics | 2011

The human proteome project: current state and future direction.

Pierre Legrain; Ruedi Aebersold; Alexander I. Archakov; Amos Marc Bairoch; Kumar Bala; Laura Beretta; John J. M. Bergeron; Christoph H. Borchers; Garry L. Corthals; Catherine E. Costello; Eric W. Deutsch; Bruno Domon; William S. Hancock; Fuchu He; Denis F. Hochstrasser; György Marko-Varga; Ghasem Hosseini Salekdeh; Salvatore Sechi; Michael Snyder; Sudhir Srivastava; Mathias Uhlén; Cathy H. Wu; Tadashi Yamamoto; Young-Ki Paik; Gilbert S. Omenn

After the successful completion of the Human Genome Project, the Human Proteome Organization has recently officially launched a global Human Proteome Project (HPP), which is designed to map the entire human protein set. Given the lack of protein-level evidence for about 30% of the estimated 20,300 protein-coding genes, a systematic global effort will be necessary to achieve this goal with respect to protein abundance, distribution, subcellular localization, interaction with other biomolecules, and functions at specific time points. As a general experimental strategy, HPP research groups will use the three working pillars for HPP: mass spectrometry, antibody capture, and bioinformatics tools and knowledge bases. The HPP participants will take advantage of the output and cross-analyses from the ongoing Human Proteome Organization initiatives and a chromosome-centric protein mapping strategy, termed C-HPP, with which many national teams are currently engaged. In addition, numerous biologically driven and disease-oriented projects will be stimulated and facilitated by the HPP. Timely planning with proper governance of HPP will deliver a protein parts list, reagents, and tools for protein studies and analyses, and a stronger basis for personalized medicine. The Human Proteome Organization urges each national research funding agency and the scientific community at large to identify their preferred pathways to participate in aspects of this highly promising project in a HPP consortium of funders and investigators.


Nature Medicine | 2013

miR-214 targets ATF4 to inhibit bone formation

Xiaogang Wang; Baosheng Guo; Qi Li; Jiang Peng; Zhijun Yang; Aiyuan Wang; Dong Li; Zhibo Hou; Ke Lv; Guanghan Kan; Hongqing Cao; Heng Wu; Jinping Song; Xiaohua Pan; Qiao Sun; Shukuan Ling; Yuheng Li; Mu Zhu; Pengfei Zhang; Songlin Peng; Xiaoqing Xie; Tao Tang; An Hong; Zhaoxiang Bian; Yanqiang Bai; Aiping Lu; Yinghui Li; Fuchu He; Ge Zhang; Yingxian Li

Emerging evidence indicates that microRNAs (miRNAs) have important roles in regulating osteogenic differentiation and bone formation. Thus far, no study has established the pathophysiological role for miRNAs identified in human osteoporotic bone specimens. Here we found that elevated miR-214 levels correlated with a lower degree of bone formation in bone specimens from aged patients with fractures. We also found that osteoblast-specific manipulation of miR-214 levels by miR-214 antagomir treatment in miR-214 transgenic, ovariectomized, or hindlimb-unloaded mice revealed an inhibitory role of miR-214 in regulating bone formation. Further, in vitro osteoblast activity and matrix mineralization were promoted by antagomir-214 and decreased by agomir-214, and miR-214 directly targeted ATF4 to inhibit osteoblast activity. These data suggest that miR-214 has a crucial role in suppressing bone formation and that miR-214 inhibition in osteoblasts may be a potential anabolic strategy for ameliorating osteoporosis.


Molecular & Cellular Proteomics | 2007

Proteome Analysis of Hepatocellular Carcinoma by Two-dimensional Difference Gel Electrophoresis Novel Protein Markers in Hepatocellular Carcinoma Tissues

Wei Sun; Baocai Xing; Yi Sun; Xiaojuan Du; Min Lu; Chunyi Hao; Zhuang Lu; Wei Mi; Songfeng Wu; Handong Wei; Xue Gao; Yunping Zhu; Ying Jiang; Xiaohong Qian; Fuchu He

Hepatocellular carcinoma (HCC) is a highly malignant tumor, and chronic infection with hepatitis B virus is one of its major risk factors. To identify the proteins involved in HCC carcinogenesis, we used two-dimensional fluorescence DIGE to study the differentially expressed proteins in tumor and adjacent nontumor tissue samples. Samples from 12 hepatitis B virus-associated HCC patients were analyzed. A total of 61 spots were significantly up-regulated (ratio ≥ 2, p ≤ 0.01) in tumor samples, whereas 158 spots were down-regulated (ratio ≤ −2, p ≤ 0.01). Seventy-one gene products were identified among these spots. Members of the heat shock protein 70 and 90 families were simultaneously up-regulated, whereas metabolism-associated proteins were decreased in HCC samples. The down-regulation of mitochondrial and peroxisomal proteins in these results suggested loss of special organelle functions during HCC carcinogenesis. Four metabolic enzymes involved in the methylation cycle in the liver were down-regulated in HCC tissues, indicating S-adenosylmethionine deficiency in HCC. Two gene products, glyceraldehyde-3-phosphate dehydrogenase and formimidoyltransferase-cyclodeaminase, were identified from inversely altered spots, suggesting that different isoforms or post-translational modifications of these two proteins might play different roles in HCC. For the first time, the overexpression of Hcp70/Hsp90-organizing protein and heterogeneous nuclear ribonucleoproteins C1/C2 in HCC tissues was confirmed by Western blot and then by immunohistochemistry staining in 70 HCC samples, suggesting their potential as protein tumor markers. In summary, we profiled proteome alterations in HCC tissues, and these results may provide useful insights for understanding the mechanism involved in the process of HCC carcinogenesis.


Molecular and Cellular Biochemistry | 2002

Characterization and expression of three novel differentiation-related genes belong to the human NDRG gene family.

Xianghu Qu; Yun Zhai; Handong Wei; Chenggang Zhang; Guichun Xing; Yongtao Yu; Fuchu He

NDRG1(N-Myc downstream regulated) is upregulated during cell differentiation, repressed by N-myc and c-myc in embryonic cells, and suppressed in several tumor cells. A nonsense mutation in the NDRG1 gene has been reported to be causative for hereditary motor and sensory neuropathy-Lom (HMSNL), indicating that NDRG1 functions in the peripheral nervous system necessary for axonal survival. Here, we cloned three human cDNAs encoding NDRG2 (371aa), NDRG3 (375aa) and NDRG4 (339aa), which are homologous to NDRG1. These three genes, together with NDRG1, constitute the NDRG gene family. The phylogenetic analysis of the family demonstrated that human NDRG1 and NDRG3 belong to a subfamily, and NDRG2 and NDRG4 to another. At amino acid (aa) level, the four members share 53–65% identity. Each of the four proteins contains an α/β hydrolase fold as in human lysosomal acid lipase. Expression of the fusion proteins NDRG2/GFP, NDRG3/GFP and NDRG4/GFP in COS-7 cells showed that all of them are cytosolic proteins. Based on UniGene cluster analysis, the genes NDRG2, NDRG3 and NDRG4 are located at chromosome 14q11.1–11.2, 20q12–11.23 and 16q21–22.1, respectively. Northern and dot blot analysis shows that all of the three genes are highly expressed in adult brain and almost not detected in the eight human cancer lines. In addition, in contrast to the relatively ubiquitous expression of NDRG1, NDRG2 is highly expressed in adult skeletal muscle and brain, NDRG3 highly expressed in brain and testis, and NDRG4 specifically expressed in brain and heart, suggesting that they might display different specific functions in distinct tissues.


Nature Medicine | 2012

A delivery system targeting bone formation surfaces to facilitate RNAi-based anabolic therapy

Ge Zhang; Baosheng Guo; Heng Wu; Tao Tang; Bao-Ting Zhang; Lizhen Zheng; Yixin He; Zhijun Yang; Xiaohua Pan; Heelum Chow; Kinwah To; Yaping Li; Dahu Li; Xinluan Wang; Yi-Xiang J. Wang; Kwong-Man Lee; Zhibo Hou; Nan Dong; Gang Li; Kwok-Sui Leung; Leung-Kim Hung; Fuchu He; Lingqiang Zhang; Ling Qin

Metabolic skeletal disorders associated with impaired bone formation are a major clinical challenge. One approach to treat these defects is to silence bone-formation–inhibitory genes by small interference RNAs (siRNAs) in osteogenic-lineage cells that occupy the niche surrounding the bone-formation surfaces. We developed a targeting system involving dioleoyl trimethylammonium propane (DOTAP)-based cationic liposomes attached to six repetitive sequences of aspartate, serine, serine ((AspSerSer)6) for delivering siRNAs specifically to bone-formation surfaces. Using this system, we encapsulated an osteogenic siRNA that targets casein kinase-2 interacting protein-1 (encoded by Plekho1, also known as Plekho1). In vivo systemic delivery of Plekho1 siRNA in rats using our system resulted in the selective enrichment of the siRNAs in osteogenic cells and the subsequent depletion of Plekho1. A bioimaging analysis further showed that this approach markedly promoted bone formation, enhanced the bone micro-architecture and increased the bone mass in both healthy and osteoporotic rats. These results indicate (AspSerSer)6-liposome as a promising targeted delivery system for RNA interference–based bone anabolic therapy.


Bioinformatics | 2003

LDA—a java-based linkage disequilibrium analyzer

Keyue Ding; Kaixin Zhou; Fuchu He; Yan Shen

UNLABELLED We describe an integrated java-based program that provides elaborate graphic and plain-text output of pairwise linkage disequilibrium (LD) analysis of single nucleotide polymorphisms genotypic data. It is most suitable for molecular geneticists, who are focusing on LD measures estimation, statistical significance test and extent prediction. AVAILABILITY The software is available at: http://www.chgb.org.cn/lda/lda.htm. SUPPLEMENTARY INFORMATION Detailed tutorials, LDA help system and examples are distributed within LDA software. For Macintosh OS X user, the Jre version 1.4 can be downloaded from http://connect.apple.com.


Molecular Systems Biology | 2014

Toward an understanding of the protein interaction network of the human liver.

Jian Wang; Keke Huo; Lixin Ma; Liu-Jun Tang; Dong-Dong Li; Xiaobi Huang; Yanzhi Yuan; Chunhua Li; Wei-wei Wang; Wei Guan; Hui Chen; Chaozhi Jin; Junchen Wei; Wanqiao Zhang; Yongsheng Yang; Qiongming Liu; Ying Zhou; Cuili Zhang; Zhihao Wu; Wang-Xiang Xu; Ying-ying Zhang; Tao Liu; Donghui Yu; Yaping Zhang; Liang Chen; Dewu Zhu; Xing Zhong; Lixin Kang; Xiang Gan; Xiaolan Yu

Proteome‐scale protein interaction maps are available for many organisms, ranging from bacteria, yeast, worms and flies to humans. These maps provide substantial new insights into systems biology, disease research and drug discovery. However, only a small fraction of the total number of human protein–protein interactions has been identified. In this study, we map the interactions of an unbiased selection of 5026 human liver expression proteins by yeast two‐hybrid technology and establish a human liver protein interaction network (HLPN) composed of 3484 interactions among 2582 proteins. The data set has a validation rate of over 72% as determined by three independent biochemical or cellular assays. The network includes metabolic enzymes and liver‐specific, liver‐phenotype and liver‐disease proteins that are individually critical for the maintenance of liver functions. The liver enriched proteins had significantly different topological properties and increased our understanding of the functional relationships among proteins in a liver‐specific manner. Our data represent the first comprehensive description of a HLPN, which could be a valuable tool for understanding the functioning of the protein interaction network of the human liver.

Collaboration


Dive into the Fuchu He's collaboration.

Top Co-Authors

Avatar

Guichun Xing

Chinese National Human Genome Center

View shared research outputs
Top Co-Authors

Avatar

Lingqiang Zhang

Dalian Medical University

View shared research outputs
Top Co-Authors

Avatar

Handong Wei

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Gangqiao Zhou

Chinese National Human Genome Center

View shared research outputs
Top Co-Authors

Avatar

Yun Zhai

Chinese National Human Genome Center

View shared research outputs
Top Co-Authors

Avatar

Songfeng Wu

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Xiaohong Qian

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge