Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Xiaohong Qian is active.

Publication


Featured researches published by Xiaohong Qian.


Molecular & Cellular Proteomics | 2007

Proteome Analysis of Hepatocellular Carcinoma by Two-dimensional Difference Gel Electrophoresis Novel Protein Markers in Hepatocellular Carcinoma Tissues

Wei Sun; Baocai Xing; Yi Sun; Xiaojuan Du; Min Lu; Chunyi Hao; Zhuang Lu; Wei Mi; Songfeng Wu; Handong Wei; Xue Gao; Yunping Zhu; Ying Jiang; Xiaohong Qian; Fuchu He

Hepatocellular carcinoma (HCC) is a highly malignant tumor, and chronic infection with hepatitis B virus is one of its major risk factors. To identify the proteins involved in HCC carcinogenesis, we used two-dimensional fluorescence DIGE to study the differentially expressed proteins in tumor and adjacent nontumor tissue samples. Samples from 12 hepatitis B virus-associated HCC patients were analyzed. A total of 61 spots were significantly up-regulated (ratio ≥ 2, p ≤ 0.01) in tumor samples, whereas 158 spots were down-regulated (ratio ≤ −2, p ≤ 0.01). Seventy-one gene products were identified among these spots. Members of the heat shock protein 70 and 90 families were simultaneously up-regulated, whereas metabolism-associated proteins were decreased in HCC samples. The down-regulation of mitochondrial and peroxisomal proteins in these results suggested loss of special organelle functions during HCC carcinogenesis. Four metabolic enzymes involved in the methylation cycle in the liver were down-regulated in HCC tissues, indicating S-adenosylmethionine deficiency in HCC. Two gene products, glyceraldehyde-3-phosphate dehydrogenase and formimidoyltransferase-cyclodeaminase, were identified from inversely altered spots, suggesting that different isoforms or post-translational modifications of these two proteins might play different roles in HCC. For the first time, the overexpression of Hcp70/Hsp90-organizing protein and heterogeneous nuclear ribonucleoproteins C1/C2 in HCC tissues was confirmed by Western blot and then by immunohistochemistry staining in 70 HCC samples, suggesting their potential as protein tumor markers. In summary, we profiled proteome alterations in HCC tissues, and these results may provide useful insights for understanding the mechanism involved in the process of HCC carcinogenesis.


Molecular & Cellular Proteomics | 2005

An Approach to Studying Lung Cancer-related Proteins in Human Blood

Ting Xiao; Wantao Ying; Lei Li; Zhi Hu; Ying Ma; Liyan Jiao; Jinfang Ma; Yun Cai; Dongmei Lin; Suping Guo; Naijun Han; Xuebing Di; Min Li; Dechao Zhang; Kai Su; Jinsong Yuan; Hongwei Zheng; Meixia Gao; Jie He; Susheng Shi; Wuju Li; Ningzhi Xu; Husheng Zhang; Yan Liu; Kaitai Zhang; Yanning Gao; Xiaohong Qian; Shujun Cheng

Early stage lung cancer detection is the first step toward successful clinical therapy and increased patient survival. Clinicians monitor cancer progression by profiling tumor cell proteins in the blood plasma of afflicted patients. Blood plasma, however, is a difficult cancer protein assessment medium because it is rich in albumins and heterogeneous protein species. We report herein a method to detect the proteins released into the circulatory system by tumor cells. Initially we analyzed the protein components in the conditioned medium (CM) of lung cancer primary cell or organ cultures and in the adjacent normal bronchus using one-dimensional PAGE and nano-ESI-MS/MS. We identified 299 proteins involved in key cellular process such as cell growth, organogenesis, and signal transduction. We selected 13 interesting proteins from this list and analyzed them in 628 blood plasma samples using ELISA. We detected 11 of these 13 proteins in the plasma of lung cancer patients and non-patient controls. Our results showed that plasma matrix metalloproteinase 1 levels were elevated significantly in late stage lung cancer patients and that the plasma levels of 14-3-3 σ, β, and η in the lung cancer patients were significantly lower than those in the control subjects. To our knowledge, this is the first time that fascin, ezrin, CD98, annexin A4, 14-3-3 σ, 14-3-3 β, and 14-3-3 η proteins have been detected in human plasma by ELISA. The preliminary results showed that a combination of CD98, fascin, polymeric immunoglobulin receptor/secretory component and 14-3-3 η had a higher sensitivity and specificity than any single marker. In conclusion, we report a method to detect proteins released into blood by lung cancer. This pilot approach may lead to the identification of novel protein markers in blood and provide a new method of identifying tumor biomarker profiles for guiding both early detection and therapy of human cancer.


Electrophoresis | 2001

Proteomic characterization of early‐stage differentiation of mouse embryonic stem cells into neural cells induced by all‐trans retinoic acid in vitro

Xiaoxia Guo; Wantao Ying; Jinghong Wan; Zhiyuan Hu; Xiaohong Qian; Hongwei Zhang; Fuchu He

Embryonic stem (ES) cells are totipotent stem cells, which can differentiate into various kinds of cell types, including neurons. They are widely used as a model system for investigating mechanisms of differentiation events during early mouse development. In this study, proteomic techniques were used to approach the protein profile associated with the early‐stage differentiation of ES cells into neuronal cells induced by all‐trans retinoic acid (ATRA) in vitro. In comparison of the protein profile of parent ES cells with that of ES‐derived neural‐committed cells, which was induced by ATRA for four days, 24 differentially displayed protein spots were selected from two‐dimensional electrophoresis (2‐DE) gels for further protein identification by pepide mass fingerprinting (PMF). Nine proteins were known to being involved in the process of neural differentiation and/or neural survival. Of those, α‐3/α‐7 tubulin and vimentin were downregulated, while cytokeratin 8, cytokeratin 18, G1/S‐special cyclin D2, follistatin‐related protein, NEL protein, platelet‐activating factor acetylhydrolase IB α‐subunit, and thioredoxin peroxidase 2 were upregulated during differentiation of ES cells to neural cells. Additionally, other 12 protein (five upregulated and seven downregulated) spots associated with ES cell differentiation into neuronal cells were not matched to known proteins so far, implicating that they might be novel proteins. The results above indicated that the molecular mechanisms of differentiation of ES cells to neural cells in vitro might be similar to those of other neural systems in vitro and identified that proteomic analysis is an effective strategy to comprehensively unravel the regulatory network of differentiation.


Journal of Proteome Research | 2008

Enrichment of Phosphopeptides by Fe3+-Immobilized Magnetic Nanoparticles for Phosphoproteome Analysis of the Plasma Membrane of Mouse Liver

Feng Tan; Yangjun Zhang; Wei Mi; Jinglan Wang; Junying Wei; Yun Cai; Xiaohong Qian

Immobilized metal ion affinity chromatography (IMAC) is a commonly used technique for phosphoprotein analysis due to its specific affinity for phosphopeptides. In this study, Fe3+-immobilized magnetic nanoparticles (Fe3+-IMAN) with an average diameter of 15 nm were synthesized and applied to enrich phosphopeptides. Compared with commercial microscale IMAC beads, Fe3+-IMAN has a larger surface area and better dispersibility in buffer solutions which improved the specific interaction with phosphopeptides. Using tryptic digests of the phosphoprotein alpha-casein as a model sample, the number and signal-to-noise ratios of the phosphopeptides identified by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) following Fe3+-IMAN enrichment greatly increased relative to results obtained with direct MALDI-TOFMS analysis. The lowest detectable concentration is 5 x 10(-11) M for 100 microL of pure standard phosphopeptide (FLTEpYVATR) following Fe3+-IMAN enrichment. We presented a phosphopeptide enrichment scheme using simple Fe3+-IMAN and also a combined approach of strong cation exchange chromatography and Fe3+-IMAN for phosphoproteome analysis of the plasma membrane of mouse liver. In total, 217 unique phosphorylation sites corresponding to 158 phosphoproteins were identified by nano-LC-MS/MS. This efficient approach will be very useful in large-scale phosphoproteome analysis.


Proteomics | 2004

Proteomic analysis on structural proteins of Severe Acute Respiratory Syndrome coronavirus

Wantao Ying; Yunwei Hao; Yangjun Zhang; Wenming Peng; E-De Qin; Yun Cai; Kaihua Wei; Jie Wang; Guohui Chang; Wei Sun; Shujia Dai; Xiaohai Li; Yunping Zhu; Jianqi Li; Songfeng Wu; Lihai Guo; Jingquan Dai; Jinglan Wang; Ping Wan; Tinggui Chen; Chunjuan Du; Dong Li; Jia Wan; Xuezhang Kuai; Weihua Li; Rong Shi; Handong Wei; Cheng Cao; Man Yu; Liu H

Recently, a new coronavirus was isolated from the lung tissue of autopsy sample and nasal/throat swabs of the patients with Severe Acute Respiratory Syndrome (SARS) and the causative association with SARS was determined. To reveal further the characteristics of the virus and to provide insight about the molecular mechanism of SARS etiology, a proteomic strategy was utilized to identify the structural proteins of SARS coronavirus (SARS‐CoV) isolated from Vero E6 cells infected with the BJ‐01 strain of the virus. At first, Western blotting with the convalescent sera from SARS patients demonstrated that there were various structural proteins of SARS‐CoV in the cultured supernatant of virus infected‐Vero E6 cells and that nucleocaspid (N) protein had a prominent immunogenicity to the convalescent sera from the patients with SARS, while the immune response of spike (S) protein probably binding with membrane (M) glycoprotein was much weaker. Then, sodium dodecyl sulfate‐polyacrylamide gel electrophoresis (SDS‐PAGE) was used to separate the complex protein constituents, and the strategy of continuous slicing from loading well to the bottom of the gels was utilized to search thoroughly the structural proteins of the virus. The proteins in sliced slots were trypsinized in‐gel and identified by mass spectrometry. Three structural proteins named S, N and M proteins of SARS‐CoV were uncovered with the sequence coverage of 38.9, 93.1 and 28.1% respectively. Glycosylation modification in S protein was also analyzed and four glycosylation sites were discovered by comparing the mass spectra before and after deglycosylation of the peptides with PNGase F digestion. Matrix‐assisted laser desorption/ionization‐mass spectrometry determination showed that relative molecular weight of intact N protein is 45 929 Da, which is very close to its theoretically calculated molecular weight 45 935 Da based on the amino acid sequence deduced from the genome with the first amino acid methionine at the N‐terminus depleted and second, serine, acetylated, indicating that phosphorylation does not happen at all in the predicted phosphorylation sites within infected cells nor in virus particles. Intriguingly, a series of shorter isoforms of N protein was observed by SDS‐PAGE and identified by mass spectrometry characterization. For further confirmation of this phenomenon and its related mechanism, recombinant N protein of SARS‐CoV was cleaved in vitro by caspase‐3 and ‐6 respectively. The results demonstrated that these shorter isoforms could be the products from cleavage of caspase‐3 rather than that of caspase‐6. Further, the relationship between the caspase cleavage and the viral infection to the host cell is discussed.


Molecular & Cellular Proteomics | 2009

A Strategy for Precise and Large Scale Identification of Core Fucosylated Glycoproteins

Wei Jia; Zhuang Lu; Yan Fu; Haipeng Wang; Le-Heng Wang; Hao Chi; Zuo-Fei Yuan; Zhaobin Zheng; Lina Song; Huanhuan Han; YiMin Liang; Jinglan Wang; Yun Cai; Yukui Zhang; Yulin Deng; Wantao Ying; Simin He; Xiaohong Qian

Core fucosylation (CF) patterns of some glycoproteins are more sensitive and specific than evaluation of their total respective protein levels for diagnosis of many diseases, such as cancers. Global profiling and quantitative characterization of CF glycoproteins may reveal potent biomarkers for clinical applications. However, current techniques are unable to reveal CF glycoproteins precisely on a large scale. Here we developed a robust strategy that integrates molecular weight cutoff, neutral loss-dependent MS3, database-independent candidate spectrum filtering, and optimization to effectively identify CF glycoproteins. The rationale for spectrum treatment was innovatively based on computation of the mass distribution in spectra of CF glycopeptides. The efficacy of this strategy was demonstrated by implementation for plasma from healthy subjects and subjects with hepatocellular carcinoma. Over 100 CF glycoproteins and CF sites were identified, and over 10,000 mass spectra of CF glycopeptide were found. The scale of identification results indicates great progress for finding biomarkers with a particular and attractive prospect, and the candidate spectra will be a useful resource for the improvement of database searching methods for glycopeptides.


Molecular & Cellular Proteomics | 2013

A Fast Workflow for Identification and Quantification of Proteomes

Jing Jiang; Junying Wei; Wanlin Liu; Wei Zhang; Mingwei Liu; Tianyi Fu; Tianyuan Lu; Lei Song; Wantao Ying; Cheng Chang; Yangjun Zhang; Jie Ma; Lai Wei; Anna Malovannaya; Lijun Jia; Bei Zhen; Yi Wang; Fuchu He; Xiaohong Qian; Jun Qin

The current in-depth proteomics makes use of long chromatography gradient to get access to more peptides for protein identification, resulting in covering of as many as 8000 mammalian gene products in 3 days of mass spectrometer running time. Here we report a fast sequencing (Fast-seq) workflow of the use of dual reverse phase high performance liquid chromatography - mass spectrometry (HPLC-MS) with a short gradient to achieve the same proteome coverage in 0.5 day. We adapted this workflow to a quantitative version (Fast quantification, Fast-quan) that was compatible to large-scale protein quantification. We subjected two identical samples to the Fast-quan workflow, which allowed us to systematically evaluate different parameters that impact the sensitivity and accuracy of the workflow. Using the statistics of significant test, we unraveled the existence of substantial falsely quantified differential proteins and estimated correlation of false quantification rate and parameters that are applied in label-free quantification. We optimized the setting of parameters that may substantially minimize the rate of falsely quantified differential proteins, and further applied them on a real biological process. With improved efficiency and throughput, we expect that the Fast-seq/Fast-quan workflow, allowing pair wise comparison of two proteomes in 1 day may make MS available to the masses and impact biomedical research in a positive way.


Hepatology | 2010

Functional proteomic analysis of nonalcoholic fatty liver disease in rat models: enoyl-coenzyme a hydratase down-regulation exacerbates hepatic steatosis.

Xuequn Zhang; Juntao Yang; Yuanbiao Guo; Hua Ye; Chaohui Yu; Chengfu Xu; Lei Xu; Songfeng Wu; Wei Sun; Hangdong Wei; Xue Gao; Yunping Zhu; Xiaohong Qian; Ying Jiang; Youming Li; Fuchu He

Nonalcoholic fatty liver disease (NAFLD) has emerged as a common public health problem that can progress to end‐stage liver disease. A high‐fat diet (HFD) may promote the development of NAFLD through a mechanism that is poorly understood. We adopted a proteomic approach to examine the effect of HFD on the liver proteome during the progression of NAFLD. Male Sprague‐Dawley rats fed an HFD for 4, 12, and 24 weeks replicated the progression of human NAFLD: steatosis, nonspecific inflammation, and steatohepatitis. Using two‐dimensional difference gel electrophoresis (DIGE) combined with matrix‐assisted laser desorption ionization time of flight/time of flight analysis, 95 proteins exhibiting significant changes (ratio ≥ 1.5 or ≤−1.5, P < 0.05) during the development of NAFLD were identified. Biological functions for these proteins reflected phase‐specific characteristics during the progression of the disease. The potential role of enoyl–coenzyme A hydratase (ECHS1), an enzyme that catalyzes the second step of mitochondrial fatty acid beta‐oxidation, received further investigation. First, the reduced protein level of ECHS1 was validated both in rat models and in patients with biopsy‐proven hepatic simple steatosis via immunoblotting or immunohistochemical analysis. Then the small interfering RNA (siRNA)–mediated knockdown of ECHS1 in the murine hepatocyte cell line alpha mouse liver 12 (AML12) demonstrated increased cellular lipid accumulation induced by free fatty acid (FFA) overload. Furthermore, using a hydradynamic transfection method, the in vivo silencing effect of siRNA duplexes targeting ECHS1 was further investigated in mice. Administering ECHS1 siRNA specifically reduced the expression of ECHS1 protein in mice liver, which significantly exacerbated the hepatic steatosis induced by an HFD. Conclusion: Our results revealed that ECHS1 down‐regulation contributed to HFD‐induced hepatic steatosis, which may help clarify the pathogenesis of NAFLD and point to potential targets for therapeutic interventions. (HEPATOLOGY 2010.)


Proteomics | 2008

Phosphoproteome analysis of the human Chang liver cells using SCX and a complementary mass spectrometric strategy

Shaohui Sui; Jinglan Wang; Bing Yang; Lina Song; Jiyang Zhang; Ming Chen; Jinfeng Liu; Zhuang Lu; Yun Cai; Shuo Chen; Wei Bi; Yunping Zhu; Fuchu He; Xiaohong Qian

The liver is the largest organ in the body, with many complex, essential functions, such as metabolism, deintoxication, and secretion, often regulated via post‐translational modifications, especially phosphorylation. Thus, the detection of phosphoproteins and phosphorylation sites is important to comprehensively explore human liver biological function. The human Chang liver cell line is among the first derived from non‐malignant tissue, and its phosphoproteome profile has never been globally analyzed. To develop the complete phosphoproteome and probe the roles of protein phosphorylation in normal human liver, we adopted a shotgun strategy based on strong cation exchange chromatograph, titanium dioxide and LC‐MS/MS to isolate and identify phosphorylated proteins. Two types of MS approach, Q‐TOF and IT, were used and compared to identify phosphosites from complex protein mixtures of these cells. A total of 1035 phosphorylation sites and 686 phosphorylated peptides were identified from 607 phosphoproteins. A search using the public database of PhosphoSite showed that approximately 344 phosphoproteins and 760 phosphorylation sites appeared to be novel. In addition, N‐terminal phosphorylated peptides were a greater fraction of all identified phosphopeptides. With GOfact analysis, we found that most of the identified phosphoproteins are involved in regulating metabolism, consistent with the livers role as a key metabolic organ.


Journal of Proteome Research | 2008

Quantitative proteomic signature of liver cancer cells: tissue transglutaminase 2 could be a novel protein candidate of human hepatocellular carcinoma.

Yulin Sun; Wei Mi; Jianqiang Cai; Wantao Ying; Fang Liu; Haizhen Lu; Yuanyuan Qiao; Wei Jia; Xinyu Bi; Ning Lu; Shang-Mei Liu; Xiaohong Qian; Xiaohang Zhao

Hepatocellular carcinoma (HCC) is one of the most common diseases worldwide, with extremely poor prognosis due to failure in diagnosing it early. Alpha-fetoprotein (AFP) is the only available biomarker for HCC diagnosis; however, its use in the early detection of HCC is limited, especially because about one-third of patients afflicted with HCC have normal levels of serum AFP. Thus, identifying additional biomarkers that may be used in combination with AFP to improve early detection of HCC is greatly needed. A quantitative proteomic analysis approach using stable isotope labeling with amino acids in cell culture (SILAC) combined with LTQ-FT-MS/MS identification was used to explore differentially expressed protein profiles between normal (HL-7702) and cancer (HepG2 and SK-HEP-1) cells. A total of 116 proteins were recognized as potential markers that could distinguish between HCC and normal liver cells. Certain proteins, such as AFP, intercellular adhesion molecule-1 (ICAM-1), IQ motif containing GTPase activating protein 2 (IQGAP2), claudin-1 (CLDN1) and tissue transglutaminase 2 (TGM2), were validated both in multiple cell lines and in 61 specimens of clinical HCC cases. TGM2 was overexpressed in some of the AFP-deficient HCC cells (SK-HEP-1 and Bel-7402) and in about half of the tumor tissues with low levels of serum AFP (17/32, AFP-negative HCC). Trace amounts of TGM2 were found to be expressed in the samples with high serum AFP (26/29, AFP-positive HCC). Moreover, TGM2 expression in liver tissues showed an inverse correlation with the level of serum AFP in HCC patients. Notably, TGM2 existed in the supernatant of the AFP-deficient SK-HEP-1, SMMC-7721 and HLE cells, and it was found to be induced in AFP-producing cells (HepG2) by specific siRNA silence assay. Serum TGM2 levels of 109 HCC patients and 42 healthy controls were further measured by an established ELISA assay; the levels were significantly higher in HCC patients, and they correlated with the histological grade and tumor size. These data suggest that TGM2 may serve as a novel histological/serologic candidate involved in HCC, especially for the individuals with normal serum AFP. These novel findings may provide important clues to identify new biomarkers of HCC and indirectly improve early detection of the disease.

Collaboration


Dive into the Xiaohong Qian's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wantao Ying

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jinglan Wang

University of Wollongong

View shared research outputs
Top Co-Authors

Avatar

Songfeng Wu

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Handong Wei

Chinese National Human Genome Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jie Ma

Capital Medical University

View shared research outputs
Top Co-Authors

Avatar

Jiyang Zhang

National University of Defense Technology

View shared research outputs
Top Co-Authors

Avatar

Bing Yang

Shenyang Pharmaceutical University

View shared research outputs
Researchain Logo
Decentralizing Knowledge