Fui Mee Ng
Agency for Science, Technology and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fui Mee Ng.
Journal of Medicinal Chemistry | 2013
E.A Larsson; Anna Jansson; Fui Mee Ng; Siew Wen Then; R Panicker; B Liu; Kanda Sangthongpitag; Pendharkar; S.J Tai; Jeffrey Hill; Chen Dan; Soo Yei Ho; W.W Cheong; Anders Poulsen; Stéphanie Blanchard; Grace Ruiting Lin; Jenefer Alam; Thomas H. Keller; Pär Nordlund
Tankyrases constitute potential drug targets for cancer and myelin-degrading diseases. We have applied a structure- and biophysics-driven fragment-based ligand design strategy to discover a novel family of potent inhibitors for human tankyrases. Biophysical screening based on a thermal shift assay identified highly efficient fragments binding in the nicotinamide-binding site, a local hot spot for fragment binding. Evolution of the fragment hit 4-methyl-1,2-dihydroquinolin-2-one (2) along its 7-vector yields dramatic affinity improvements in the first cycle of expansion. A crystal structure of 7-(2-fluorophenyl)-4-methylquinolin-2(1H)-one (11) reveals that the nonplanar compound extends with its fluorine atom into a pocket, which coincides with a region of the active site where structural differences are seen between tankyrases and other poly(ADP-ribose) polymerase (PARP) family members. A further cycle of optimization yielded compounds with affinities and IC50 values in the low nanomolar range and with good solubility, PARP selectivity, and ligand efficiency.
Journal of Proteomics | 2017
Jianhe Peng; Jing Cao; Fui Mee Ng; Jeffrey Hill
Pseudomonas aeruginosa infection is difficult to treat because of its drug resistance, but how it develops drug resistance remains largely unknown. In this study we investigated Ciprofloxacin resistance development in P. aeruginosa. Different Ciprofloxacin concentrations selected different low level resistant mutants, and high level resistant mutants emerged from low level resistant mutants if stressed further by Ciprofloxacin. A deep quantitative proteomic study of the Ciprofloxacin resistant mutants uncovered the cellular pathways that supported such resistances. The two low level resistant mutants had different molecular mechanisms. One was mainly due to switching to anaerobic respiration and overexpression of catalase and peroxidase, and the other was probably due to iron and polyamine uptake and DNA repair. High level of resistance involved the mexCD-oprJ efflux pump and the downregulation of PQS quorum sensing. Other pathways might also have contributed to high level resistance, like the arginine deiminase pathway, catalase, peroxidase, protein degradation and DNA repair. The intracellular Ciprofloxacin concentration assay indicated that only the mexCD-oprJ overexpressed mutants had low drug accumulation. This study provided a comprehensive overview of the proteomic landscape in the evolution of Ciprofloxacin resistance in P. aeruginosa, and might have implications in diagnosis and treatment of Ciprofloxacin resistant P. aeruginosa. Data are available via ProteomeXchange with identifier PXD004560. BIOLOGICAL SIGNIFICANCE Pseudomonas aeruginosa infection is difficult to treat because of its drug resistance, but how it develops drug resistance remains largely unknown. In this study we investigated Ciprofloxacin resistance development in P. aeruginosa. We found that Ciprofloxacin resistance developed from low to high level. Two different low levels resistant molecular mechanisms were discovered from different mutants selected by different Ciprofloxacin concentrations, one was mainly due to switching to anaerobic respiration and overexpression of catalase and peroxidase, the other was probably due to iron, polyamine, and DNA repair. High level of Ciprofloxacin resistance all involved the efflux pump, mexCD-oprJ, and the downregulation of quorum sensing. The findings of this study provided insights into the evolution of Ciprofloxacin resistance in P. aeruginosa and should have implications in diagnosis and treatment of Ciprofloxacin resistant P. aeruginosa.
The Journal of Antibiotics | 2015
Qiu Ying Lau; Yoke Yan Fion Tan; Vanessa Chai Yin Goh; David Jing Qin Lee; Fui Mee Ng; Esther H. Q. Ong; Jeffrey Hill; Cheng San Brian Chia
The lack of new antibacterial drugs entering the market and their misuse have resulted in the emergence of drug-resistant bacteria, posing a major health crisis worldwide. In particular, meticillin-resistant Staphylococcus aureus (MRSA), a pathogen responsible for numerous human infections, has become endemic in hospitals worldwide. Drug repurposing, the finding of new therapeutic indications for approved drugs, is deemed a plausible solution to accelerate drug discovery and development in this area. Towards this end, we screened 1163 drugs approved by the Food and Drug Administration (FDA) for bioactivities against MRSA in a 10 μM single-point assay. After excluding known antibiotics and antiseptics, six compounds were identified and their MICs were determined against a panel of clinical MRSA strains. A toxicity assay using human keratinocytes was also conducted to gauge their potential for repurposing as topical agents for treating MRSA skin infections.
European Journal of Medicinal Chemistry | 2015
Qiu Ying Lau; Fui Mee Ng; Jin Wei Darryl Cheong; Yi Yong Alvin Yap; Yoke Yan Fion Tan; Roland Jureen; Jeffrey Hill; Cheng San Brian Chia
The overuse and misuse of antibiotics has resulted in the emergence of drug-resistant pathogenic bacteria, including meticillin-resistant Staphylococcus aureus (MRSA), the primary pathogen responsible for human skin and soft-tissue infections. Antibacterial peptides are known to kill bacteria by rapidly disrupting their membranes and are deemed plausible alternatives to conventional antibiotics. One advantage of their membrane-targeting mode of action is that bacteria are unlikely to develop resistance as changing their cell membrane structure and morphology would likely involve extensive genetic mutations. However, major concerns in using peptides as antibacterial drugs include their instability towards plasma proteases, toxicity towards human cells due to their membrane-targeting mode of action and high manufacturing cost. These concerns can be mitigated by developing peptides as topical agents, by the judicial selection of amino acids and developing very short peptides respectively. In this preliminary report, we reveal a linear, non-hemolytic tetrapeptide with rapid bactericidal activity against MRSA developed from a structure-activity relationship study based on the antimicrobial hexapeptide WRWRWR-NH2. Our finding opens promising avenues for the development of ultra-short antibacterials to treat multidrug-resistant MRSA skin and soft tissue infections.
Journal of Enzyme Inhibition and Medicinal Chemistry | 2016
Melgious Jin Yan Ang; Qiu Ying Lau; Fui Mee Ng; Siew Wen Then; Anders Poulsen; Yuen Kuen Cheong; Zi Xian Ngoh; Yong Wah Tan; Jianhe Peng; Thomas H. Keller; Jeffrey Hill; Justin Jang Hann Chu; C. S. Brian Chia
Abstract Enterovirus 71 (EV71) is a highly infectious pathogen primarily responsible for Hand, Foot, and Mouth Disease, particularly among children. Currently, no approved antiviral drug has been developed against this disease. The EV71 3C protease is deemed an attractive drug target due to its crucial role in viral polyprotein processing. Rupintrivir, a peptide-based inhibitor originally developed to target the human rhinovirus 3C protease, was found to inhibit the EV71 3C protease. In this communication, we report the inhibitory activities of 30 Rupintrivir analogs against the EV71 3C protease. The most potent inhibitor, containing a P2 ring-constrained phenylalanine analog (compound 9), was found to be two-fold more potent than Rupintrivir (IC50 value 3.4 ± 0.4 versus 7.3 ± 0.8 μM). Our findings suggest that employing geometrically constrained residues in peptide-based protease inhibitors can potentially enhance their inhibitory activities.
Journal of Biological Chemistry | 2016
Yan Li; Ying Lei Wong; Fui Mee Ng; Boping Liu; Yun Xuan Wong; Zhin Ying Poh; Shuang Liu; Siew Wen Then; Michelle Yueqi Lee; Hui Qi Ng; Qiwei Huang; Alvin W. Hung; Joseph Cherian; Jeffrey Hill; Thomas H. Keller; CongBao Kang
Bacterial topoisomerases are attractive antibacterial drug targets because of their importance in bacterial growth and low homology with other human topoisomerases. Structure-based drug design has been a proven approach of efficiently developing new antibiotics against these targets. Past studies have focused on developing lead compounds against the ATP binding pockets of both DNA gyrase and topoisomerase IV. A detailed understanding of the interactions between ligand and target in a solution state will provide valuable information for further developing drugs against topoisomerase IV targets. Here we describe a detailed characterization of a known potent inhibitor containing a 9H-pyrimido[4,5-b]indole scaffold against the N-terminal domain of the topoisomerase IV E subunit from Escherichia coli (eParE). Using a series of biophysical and biochemical experiments, it has been demonstrated that this inhibitor forms a tight complex with eParE. NMR studies revealed the exact protein residues responsible for inhibitor binding. Through comparative studies of two inhibitors of markedly varied potencies, it is hypothesized that gaining molecular interactions with residues in the α4 and residues close to the loop of β1-α2 and residues in the loop of β3-β4 might improve the inhibitor potency.
Peptides | 2014
Melgious Jin Yan Ang; Zhitao Li; Huichang Annie Lim; Fui Mee Ng; Siew Wen Then; John Liang Kuan Wee; Joma Joy; Jeffrey Hill; C. S. Brian Chia
The Murray Valley encephalitis virus (MVEV) and the West Nile virus (WNV) are mosquito-borne single-stranded RNA Flaviviruses responsible for many cases of viral encephalitis and deaths worldwide. The former is endemic in north Australia and Papua New Guinea while the latter has spread to different parts of the world and was responsible for a recent North American outbreak in 2012, resulting in 243 fatalities. There is currently no approved vaccines or drugs against MVEV and WNV viral infections. A plausible drug target is the viral non-structural NS2B/NS3 protease due to its role in viral replication. This trypsin-like serine protease recognizes and cleaves viral polyproteins at the C-terminal end of an arginine residue, opening an avenue for the development of peptide-based antivirals. This communication compares the P2 and P3 residue preferences of the MVEV and WNV NS2B/NS3 proteases using a series of C-terminal agmatine dipeptides. Our results revealed that both viral enzymes were highly specific toward lysines at the P2 and P3 positions, suggesting that a peptidomimetic viral protease inhibitor developed against one virus should also be active against the other.
Journal of Peptide Science | 2017
Siew Mei Samantha Ng; Yi Yong Alvin Yap; Jin Wei Darryl Cheong; Fui Mee Ng; Qiu Ying Lau; Timothy Barkham; Jeanette Teo; Jeffrey Hill; Cheng San Brian Chia
Vulvovaginal candidiasis/candidosis is a common fungal infection afflicting approximately 75% of women globally caused primarily by the yeast Candida albicans. Fluconazole is widely regarded as the antifungal drug of choice since its introduction in 1990 due to its high oral bioavailability, convenient dosing regimen and favourable safety profile. However, its widespread use has led to the emergence of fluconazole‐resistant C. albicans, posing a universal clinical concern. Coupled to the dearth of new antifungal drugs entering the market, it is imperative to introduce new drug classes to counter this threat. Antimicrobial peptides (AMPs) are potential candidates due to their membrane‐disrupting mechanism of action. By specifically targeting fungal membranes and being rapidly fungicidal, they can reduce the chances of resistance development and treatment duration. Towards this goal, we conducted a head‐to‐head comparison of 61 short linear AMPs from the literature to identify the peptide with the most potent activity against fluconazole‐resistant C. albicans. The 11‐residue peptide, P11‐6, was identified and assayed against a panel of clinical C. albicans isolates followed by fungicidal/static determination and a time‐kill assay to gauge its potential for further drug development. Copyright
Scientific Reports | 2016
Yong Wah Tan; Melgious Jin Yan Ang; Qiu Ying Lau; Anders Poulsen; Fui Mee Ng; Siew Wen Then; Jianhe Peng; Jeffrey Hill; Wan Jin Hong; Cheng San Brian Chia; Justin Jang Hann Chu
Hand, Foot and Mouth Disease is a highly contagious disease caused by a range of human enteroviruses. Outbreaks occur regularly, especially in the Asia-Pacific region, putting a burden on public healthcare systems. Currently, there is no antiviral for treating this infectious disease and the only vaccines are limited to circulation in China, presenting an unmet medical need that needs to be filled urgently. The human enterovirus 3 C protease has been deemed a plausible drug target due to its essential roles in viral replication. In this study, we designed and synthesized 10 analogues of the Rhinovirus 3 C protease inhibitor, Rupintrivir, and tested their 3 C protease inhibitory activities followed by a cellular assay using human enterovirus 71 (EV71)-infected human RD cells. Our results revealed that a peptide-based compound containing a trifluoromethyl moiety to be the most potent analogue, with an EC50 of 65 nM, suggesting its potential as a lead for antiviral drug discovery.
Chemical Biology & Drug Design | 2017
Siew Mei Samantha Ng; Shu Wei Teo; Yaqing Elena Yong; Fui Mee Ng; Qiu Ying Lau; Roland Jureen; Jeffrey Hill; C. S. Brian Chia
Staphylococcus aureus is the primary pathogen responsible for the majority of human skin infections, and meticillin‐resistant S. aureus (MRSA) currently presents a major clinical concern. The overuse of Mupirocin, the first‐line topical antibacterial drug over 30 years, has led to the emergence of Mupirocin‐resistant MRSA, creating a clinical concern. The antimicrobial peptide Omiganan was touted to be a promising antibacterial drug candidate due to its rapid membrane‐disrupting bactericidal mode of action, entering clinical trials in 2005 as a topical gel to prevent catheter site infections. However, drug development ceased in 2009 due to a lack of efficacy. We postulate this to be due to proteolytic degradation caused by endogenous human skin proteases. Herein, we tested our hypothesis using Omiganan and its all‐D enantiomer in a human skin protease stability assay, followed by anti‐MRSA activity assay against of a panel of clinical MRSA isolates, a bactericidal/static determination and a time‐kill assay to gauge all‐D Omiganans potential for further topical antibacterial drug development.