Cheng San Brian Chia
Agency for Science, Technology and Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cheng San Brian Chia.
Journal of Biological Chemistry | 2013
Young Mee Kim; Shovanlal Gayen; CongBao Kang; Joma Joy; Qiwei Huang; Angela Shuyi Chen; John Liang Kuan Wee; Melgious Jin Yan Ang; Huichang Annie Lim; Alvin W. Hung; Rong Li; Christian G. Noble; Le Tian Lee; Andy Yip; Qing Yin Wang; Cheng San Brian Chia; Jeffrey Hill; Pei Yong Shi; Thomas H. Keller
Background: Dengue protease is a two-component protease that is important for viral replication. Results: An unlinked protease complex containing the NS2B regulatory region and the NS3 protease domain was obtained. Conclusion: The unlinked protease complex produces dispersed cross-peaks in NMR spectra and exists predominantly in a closed conformation in solution. Significance: This new construct will be a useful tool for drug discovery against the dengue virus. The dengue virus (DENV) is a mosquito-borne pathogen responsible for an estimated 100 million human infections annually. The viral genome encodes a two-component trypsin-like protease that contains the cofactor region from the nonstructural protein NS2B and the protease domain from NS3 (NS3pro). The NS2B-NS3pro complex plays a crucial role in viral maturation and has been identified as a potential drug target. Using a DENV protease construct containing NS2B covalently linked to NS3pro via a Gly4-Ser-Gly4 linker (“linked protease”), previous x-ray crystal structures show that the C-terminal fragment of NS2B is remote from NS3pro and exists in an open state in the absence of an inhibitor; however, in the presence of an inhibitor, NS2B complexes with NS3pro to form a closed state. This linked enzyme produced NMR spectra with severe signal overlap and line broadening. To obtain a protease construct with a resolved NMR spectrum, we expressed and purified an unlinked protease complex containing a 50-residue segment of the NS2B cofactor region and NS3pro without the glycine linker using a coexpression system. This unlinked protease complex was catalytically active at neutral pH in the absence of glycerol and produced dispersed cross-peaks in a 1H-15N heteronuclear single quantum correlation spectrum that enabled us to conduct backbone assignments using conventional techniques. In addition, titration with an active-site peptide aldehyde inhibitor and paramagnetic relaxation enhancement studies demonstrated that the unlinked DENV protease exists predominantly in a closed conformation in solution. This protease complex can serve as a useful tool for drug discovery against DENV.
Structure | 2015
Ajaybabu V. Pobbati; Xiao Han; Alvin W. Hung; Seetoh Weiguang; Nur Huda; Guo Ying Chen; CongBao Kang; Cheng San Brian Chia; Xuelian Luo; Wanjin Hong; Anders Poulsen
The human TEAD family of transcription factors (TEAD1-4) is required for YAP-mediated transcription in the Hippo pathway. Hyperactivation of TEADs co-activator YAP contributes to tissue overgrowth and human cancers, suggesting that pharmacological interference of TEAD-YAP activity may be an effective strategy for anticancer therapy. Here we report the discovery of a central pocket in the YAP-binding domain (YBD) of TEAD that is targetable by small-molecule inhibitors. Our X-ray crystallography studies reveal that flufenamic acid, a non-steroidal anti-inflammatory drug (NSAID), binds to the central pocket of TEAD2 YBD. Our biochemical and functional analyses further demonstrate that binding of NSAIDs to TEAD inhibits TEAD-YAP-dependent transcription, cell migration, and proliferation, indicating that the central pocket is important for TEAD function. Therefore, our studies discover a novel way of targeting TEAD transcription factors and set the stage for therapeutic development of specific TEAD-YAP inhibitors against human cancers.
European Journal of Medicinal Chemistry | 2011
Huichang Annie Lim; Joma Joy; Jeffrey Hill; Cheng San Brian Chia
This communication reports the synthesis and inhibitory activities of novel non-covalent peptidomimetic inhibitors of the West Nile virus NS2B/NS3 protease containing a decarboxylated P1 arginine (agmatine; 4-aminobutylguanidine) and related analogues. One agmatine peptidomimetic (4-phenyl-phenacetyl-Lys-Lys-agmatine; compound 2) was shown to be a competitive inhibitor with a binding affinity of K(i) 2.05 ± 0.13 μM and was inactive against thrombin (IC(50) > 100 μM). Our results suggest that peptidomimetics with agmatine at the P1 position could potentially be employed as starting tools in the design of non-covalent competitive protease inhibitors due to their relative stability and ease of chemical synthesis compared to inhibitors containing reactive electrophilic warheads.
Antiviral Research | 2013
CongBao Kang; Shovanlal Gayen; Weiling Wang; Rene Severin; Angela Shuyi Chen; Huichang Annie Lim; Cheng San Brian Chia; Andreas Schüller; Danny N.P. Doan; Anders Poulsen; Jeffrey Hill; Subhash G. Vasudevan; Thomas H. Keller
West Nile virus (WNV) NS2B-NS3 protease is an important drug target since it is an essential protein for the replication of the virus. In order to determine the minimum pharmacophore for protease inhibition, a series of dipeptide aldehydes were synthesized. The 50% inhibitory concentration (IC(50)) measurements revealed that a simple acetyl-KR-aldehyde was only threefold less active than 4-phenyl-phenylacetyl-KKR-aldehyde (1) (Stoermer et al., 2008) that was used as the reference compound. The ligand efficiency of 0.40 kcal/mol/HA (HA=heavy atom) for acetyl-KR-aldehyde is much improved compared to the reference compound 1 (0.23 kcal/mol/HA). The binding of the inhibitors was examined using (1)H-(15)N-HSQC experiments and differential chemical shifts were used to map the ligand binding sites. The biophysical studies show that the conformational mobility of WNV protease has a major impact on the design of novel inhibitors, since the protein conformation changes profoundly depending on the structure of the bound ligand.
European Journal of Medicinal Chemistry | 2013
Huichang Annie Lim; Melgious Jin Yan Ang; Joma Joy; Anders Poulsen; Wenshi Wu; Shi Chie Ching; Jeffrey Hill; Cheng San Brian Chia
This communication describes the synthesis and inhibitory activities of thirty-seven novel C-terminal agmatine dipeptides used as screening compounds to study the structure-activity relationship between active-site peptidomimetics and the West Nile virus (WNV) NS2B/NS3 serine protease. Our efforts lead to the discovery of a novel agmatine dipeptide inhibitor (compound 33, IC50 2.6 ± 0.3 μM) with improved inhibitory activity in comparison to the most potent inhibitor described in our recent report [IC50 4.7 ± 1.2 μM; Lim et al., Eur. J. Med. Chem. 46 (2011) 3130-3134]. In addition, our study cleared the contention surrounding the previous X-ray co-crystallization study and an enzyme inhibition report on the binding conformation adopted by active-site peptide aldehydes. Our data should provide valuable insights into the design of future peptidomimetic antivirals against WNV infections.
International Journal of Peptide Research and Therapeutics | 2010
Huichang Annie Lim; CongBao Kang; Cheng San Brian Chia
Twelve-membered head-to-tail cyclic tetrapeptides (CTPs) are rigid molecules found in nature and possess a diverse range of biological activities. A possible reason may be due to their ability to adopt rigid conformations in solution mimicking reverse-turns. Reverse-turns are common structural motifs which serve as molecular recognition sites in many protein-receptor interactions. In this paper, we describe the solid-phase synthesis of the antibacterial cyclic tetrapeptide cyclo[Gly-Ser-Pro-Glu] (cyclo[GSPE]), first isolated from the Ruegeria strain of marine bacteria by Mitova et al. (J Nat Prod 67:1178–1181, 2004). Our NMR experiments in H2O:D2O:DMSO (18:1:1) revealed that it possessed three conformations in an approximate ratio of 4:2:1 based on NMR amide peak intensities. 2D NMR studies and computer calculations revealed that the major conformer adopted a reverse-turn conformation and have ω torsion angles twisted by up to 2°, with two transoid amide bonds between Gly-Ser, Pro-Glu and two cisoid amide bonds between Ser-Pro, Glu-Gly in a cis–trans-cis–trans (ctct) pattern. This supports previous reports that majority of CTPs adopt a ctct pattern when dissolved in hydrogen-bond disrupting solvents (Che and Marshall in J Med Chem 49:111–124, 2006 and references cited therein). An ensemble of ten lowest-energy-minimised 3D structures generated using XPLOR-NIH software revealed that cyclo[GSPE] possessed a rigid backbone ring scaffold. The remaining two minor conformers were present in quantities too low for NMR structural studies.
The Journal of Antibiotics | 2015
Qiu Ying Lau; Yoke Yan Fion Tan; Vanessa Chai Yin Goh; David Jing Qin Lee; Fui Mee Ng; Esther H. Q. Ong; Jeffrey Hill; Cheng San Brian Chia
The lack of new antibacterial drugs entering the market and their misuse have resulted in the emergence of drug-resistant bacteria, posing a major health crisis worldwide. In particular, meticillin-resistant Staphylococcus aureus (MRSA), a pathogen responsible for numerous human infections, has become endemic in hospitals worldwide. Drug repurposing, the finding of new therapeutic indications for approved drugs, is deemed a plausible solution to accelerate drug discovery and development in this area. Towards this end, we screened 1163 drugs approved by the Food and Drug Administration (FDA) for bioactivities against MRSA in a 10 μM single-point assay. After excluding known antibiotics and antiseptics, six compounds were identified and their MICs were determined against a panel of clinical MRSA strains. A toxicity assay using human keratinocytes was also conducted to gauge their potential for repurposing as topical agents for treating MRSA skin infections.
European Journal of Medicinal Chemistry | 2015
Qiu Ying Lau; Fui Mee Ng; Jin Wei Darryl Cheong; Yi Yong Alvin Yap; Yoke Yan Fion Tan; Roland Jureen; Jeffrey Hill; Cheng San Brian Chia
The overuse and misuse of antibiotics has resulted in the emergence of drug-resistant pathogenic bacteria, including meticillin-resistant Staphylococcus aureus (MRSA), the primary pathogen responsible for human skin and soft-tissue infections. Antibacterial peptides are known to kill bacteria by rapidly disrupting their membranes and are deemed plausible alternatives to conventional antibiotics. One advantage of their membrane-targeting mode of action is that bacteria are unlikely to develop resistance as changing their cell membrane structure and morphology would likely involve extensive genetic mutations. However, major concerns in using peptides as antibacterial drugs include their instability towards plasma proteases, toxicity towards human cells due to their membrane-targeting mode of action and high manufacturing cost. These concerns can be mitigated by developing peptides as topical agents, by the judicial selection of amino acids and developing very short peptides respectively. In this preliminary report, we reveal a linear, non-hemolytic tetrapeptide with rapid bactericidal activity against MRSA developed from a structure-activity relationship study based on the antimicrobial hexapeptide WRWRWR-NH2. Our finding opens promising avenues for the development of ultra-short antibacterials to treat multidrug-resistant MRSA skin and soft tissue infections.
Journal of Peptide Science | 2017
Siew Mei Samantha Ng; Yi Yong Alvin Yap; Jin Wei Darryl Cheong; Fui Mee Ng; Qiu Ying Lau; Timothy Barkham; Jeanette Teo; Jeffrey Hill; Cheng San Brian Chia
Vulvovaginal candidiasis/candidosis is a common fungal infection afflicting approximately 75% of women globally caused primarily by the yeast Candida albicans. Fluconazole is widely regarded as the antifungal drug of choice since its introduction in 1990 due to its high oral bioavailability, convenient dosing regimen and favourable safety profile. However, its widespread use has led to the emergence of fluconazole‐resistant C. albicans, posing a universal clinical concern. Coupled to the dearth of new antifungal drugs entering the market, it is imperative to introduce new drug classes to counter this threat. Antimicrobial peptides (AMPs) are potential candidates due to their membrane‐disrupting mechanism of action. By specifically targeting fungal membranes and being rapidly fungicidal, they can reduce the chances of resistance development and treatment duration. Towards this goal, we conducted a head‐to‐head comparison of 61 short linear AMPs from the literature to identify the peptide with the most potent activity against fluconazole‐resistant C. albicans. The 11‐residue peptide, P11‐6, was identified and assayed against a panel of clinical C. albicans isolates followed by fungicidal/static determination and a time‐kill assay to gauge its potential for further drug development. Copyright
Scientific Reports | 2016
Yong Wah Tan; Melgious Jin Yan Ang; Qiu Ying Lau; Anders Poulsen; Fui Mee Ng; Siew Wen Then; Jianhe Peng; Jeffrey Hill; Wan Jin Hong; Cheng San Brian Chia; Justin Jang Hann Chu
Hand, Foot and Mouth Disease is a highly contagious disease caused by a range of human enteroviruses. Outbreaks occur regularly, especially in the Asia-Pacific region, putting a burden on public healthcare systems. Currently, there is no antiviral for treating this infectious disease and the only vaccines are limited to circulation in China, presenting an unmet medical need that needs to be filled urgently. The human enterovirus 3 C protease has been deemed a plausible drug target due to its essential roles in viral replication. In this study, we designed and synthesized 10 analogues of the Rhinovirus 3 C protease inhibitor, Rupintrivir, and tested their 3 C protease inhibitory activities followed by a cellular assay using human enterovirus 71 (EV71)-infected human RD cells. Our results revealed that a peptide-based compound containing a trifluoromethyl moiety to be the most potent analogue, with an EC50 of 65 nM, suggesting its potential as a lead for antiviral drug discovery.