Fuli Li
Chinese Academy of Sciences
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Fuli Li.
Fems Microbiology Letters | 2003
Fuli Li; Ping Xu; Cui Qing Ma; Lai Long Luo; Xiao Shan Wang
The dibenzothiophene (DBT) desulfurization pathway of a facultative thermophilic bacterium Mycobacterium sp. X7B was investigated. Metabolites were identified by gas chromatography-mass spectrometry, and the results showed that 2-hydroxybiphenyl, the end product of the previously reported sulfur-specific pathway (also called 4S pathway), was further converted to 2-methoxybiphenyl. This is the first strain to possess this ability and therefore, an extended 4S pathway was determined. In addition, the DBT-desulfurizing bacterium Mycobacterium sp. X7B was able to grow on DBT derivatives such as 4-methylDBT and 4,6-dimethylDBT. Resting cells could desulfurize diesel oil (total sulfur, 535 ppm) after hydrodesulfurization. GC flame ionization detection and GC atomic emission detection analyses were used to qualitatively evaluate the effect of Mycobacterium sp. X7B treatment on the content of the diesel oil. The total sulfur content of the diesel oil was reduced 86% using resting cell biocatalysts for 24 h at 45 degrees C.
Applied and Environmental Microbiology | 2005
Fuli Li; Ping Xu; Jinhui Feng; Ling Meng; Yuan Zheng; Lailong Luo; Cuiqing Ma
ABSTRACT Mycobacterium goodii X7B, which had been primarily isolated as a bacterial strain capable of desulfurizing dibenzothiophene to produce 2-hydroxybiphenyl via the 4S pathway, was also found to desulfurize benzothiophene. The desulfurization product was identified as o-hydroxystyrene by gas chromatography (GC)-mass spectrometry analysis. This strain appeared to have the ability to remove organic sulfur from a broad range of sulfur species in gasoline. When Dushanzi straight-run gasoline (DSRG227) containing various organic sulfur compounds was treated with immobilized cells of strain X7B for 24 h, the total sulfur content significantly decreased, from 227 to 71 ppm at 40°C. GC flame ionization detection and GC atomic emission detection analysis were used to qualitatively evaluate the effects of M. goodii X7B treatment on the contents of gasoline. In addition, when immobilized cells were incubated at 40°C with DSRG275, the sulfur content decreased from 275 to 54 ppm in two consecutive reactions. With this excellent efficiency, strain X7B is considered a good potential candidate for industrial applications for the biodesulfurization of gasoline.
Journal of Bacteriology | 2007
Fuli Li; Christoph H. Hagemeier; Henning Seedorf; Gerhard Gottschalk; Rudolf K. Thauer
The synthesis of citrate from acetyl-coenzyme A and oxaloacetate is catalyzed in most organisms by a Si-citrate synthase, which is Si-face stereospecific with respect to C-2 of oxaloacetate. However, in Clostridium kluyveri and some other strictly anaerobic bacteria, the reaction is catalyzed by a Re-citrate synthase, whose primary structure has remained elusive. We report here that Re-citrate synthase from C. kluyveri is the product of a gene predicted to encode isopropylmalate synthase. C. kluyveri is also shown to contain a gene for Si-citrate synthase, which explains why cell extracts of the organism always exhibit some Si-citrate synthase activity.
Letters in Applied Microbiology | 2012
Wei-Nong Zhang; Zi-Yong Liu; Zitong Liu; Fuli Li
Aims: To determine whether corncob residue (CCR) could be a good substrate for butanol production.
PLOS ONE | 2013
Guangrong Hu; Yong Fan; Lei Zhang; Cheng Yuan; Jufang Wang; Wenjian Li; Qiang Hu; Fuli Li
The unicellular green microalga Desmodesmus sp. S1 can produce more than 50% total lipid of cell dry weight under high light and nitrogen-limitation conditions. After irradiation by heavy 12C6+ ion beam of 10, 30, 60, 90 or 120 Gy, followed by screening of resulting mutants on 24-well microplates, more than 500 mutants were obtained. One of those, named D90G-19, exhibited lipid productivity of 0.298 g L−1⋅d−1, 20.6% higher than wild type, likely owing to an improved maximum quantum efficiency (Fv/Fm) of photosynthesis under stress. This work demonstrated that heavy-ion irradiation combined with high-throughput screening is an effective means for trait improvement. The resulting mutant D90G-19 may be used for enhanced lipid production.
Biotechnology for Biofuels | 2011
Cheng Yuan; Junhan Liu; Yong Fan; Xiaohui Ren; Guangrong Hu; Fuli Li
BackgroundBiodiesel is considered to be a promising future substitute for fossil fuels, and microalgae are one source of biodiesel. The ratios of lipid, carbohydrates and proteins are different in different microalgal species, and finding a good strain for oil production remains a difficult prospect. Strains producing valuable co-products would improve the viability of biofuel production.ResultsIn this study, we performed sequence analysis of the 18S rRNA gene and internal transcribed spacer (ITS) of an algal strain designated HSO-3-1, and found that it was closely related to the Mychonastes afer strain CCAP 260/6. Morphology and cellular structure observation also supported the identification of strain HSO-3-1 as M. afer. We also investigated the effects of nitrogen on the growth and lipid accumulation of the naturally occurring M. afer HSO-3-1, and its potential for biodiesel production. In total, 17 fatty acid methyl esters (FAMEs) were identified in M. afer HSO-3-1, using gas chromatography/mass spectrometry. The total lipid content of M. afer HSO-3-1 was 53.9% of the dry cell weight, and we also detected nervonic acid (C24:1), which has biomedical applications, making up 3.8% of total fatty acids. The highest biomass and lipid yields achieved were 3.29 g/l and 1.62 g/l, respectively, under optimized conditions.ConclusionThe presence of octadecenoic and hexadecanoic acids as major components, with the presence of a high-value component, nervonic acid, renders M. afer HSO-3-1 biomass an economic feedstock for biodiesel production.
Applied and Environmental Microbiology | 2006
Bo Yu; Ping Xu; Shanshan Zhu; Xiaofeng Cai; Ying Wang; Li Li; Fuli Li; Xiaoyong Liu; Cuiqing Ma
ABSTRACT The carbazole dioxygenase genes were introduced into a dibenzothiophene degrader. The recombinant Rhodococcus erythropolis SN8 was capable of efficiently degrading dibenzothiophene and carbazole simultaneously. SN8 could also degrade various alkylated derivatives of carbazole and dibenzothiophene in FS4800 crude oil by just a one-step bioprocess.
Molecular BioSystems | 2013
Yang Tan; Juanjuan Liu; Xiaohua Chen; Huajun Zheng; Fuli Li
Clostridium ljungdahlii DSM 13528 represents a promising platform organism for production of a whole variety of different biofuels and biochemicals from syngas. Although the publication of its genome gave us the first possibility to understand the molecular mechanism for carbon utilization, reports on the profiling of the transcriptome were unavailable. In this study, RNA-seq-based global transcriptome analysis was performed to compare the transcriptomes of C. ljungdahlii grown on CO-CO2 with those grown on fructose. In total, 1852 differentially expressed genes were identified, which included 366 upregulated genes and 1486 downregulated genes under CO-CO2 conditions. These up- and downregulated genes are predicted to be involved in the Wood-Ljungdahl pathway, CO2 reduction to acetic acid, fructose fermentation, central carbon metabolism and transport, and vitamin B12 synthesis. In addition, 36 small RNAs were identified, 20 of which were novel small RNAs. Quantitative real-time PCR (qRT-PCR) and RT-PCR analysis of the selected functional genes and sRNA genes expression profiles were found to be consistent with the RNA-seq data. The study allowed a deeper understanding of the molecular mechanisms underlying syngas utilization and could help guide the design of rational strategies to increase the efficiency of syngas fixation in the future.
Advances in Biochemical Engineering \/ Biotechnology | 2009
Ping Xu; Jinhui Feng; Bo Yu; Fuli Li; Cuiqing Ma
The emission of sulfur oxides can have adverse effects on the environment. Biodesulfurization of fossil fuels is attracting more and more attention because such a bioprocess is environmentally friendly. Some techniques of desulfurization have been used or studied to meet the stricter limitation on sulfur content in China. Recent advances have demonstrated the mechanism and developments for biodesulfurization of gasoline, diesel and crude oils by free cells or immobilized cells. Genetic technology was also used to improve sulfur removal efficiencies. In this review, we summarize recent progress mainly in China on petroleum biodesulfurization.
Applied and Environmental Microbiology | 2013
Shi-An Wang; Fuli Li
ABSTRACT Specific Saccharomyces cerevisiae strains were recently found to be capable of efficiently utilizing inulin, but genetic mechanisms of inulin hydrolysis in yeast remain unknown. Here we report functional characteristics of invertase SUC2 from strain JZ1C and demonstrate that SUC2 is the key enzyme responsible for inulin metabolism in S. cerevisiae.